
Sportstalk SDK -iOS

Theodore Angelo Lesano

Mar 02, 2023

CONTENTS

1 GETTING STARTED: Setting up the SDK 3

2 Implement Custom JWT 5

3 Callback Function Overview 7

4 Creating/Updating a user 9

5 Joining a Room 11

6 Joining a Room using Custom ID 13

7 Getting room updates 15

8 Start/Stop Getting Event Updates 17

9 Sending A Message 19

10 Conversations and Comments 21

11 The Bare Minimum 23

12 Chat Application Best Practices 25

13 User Client 27
13.1 Create/Update User . 27
13.2 Delete User . 28
13.3 Get User Details . 29
13.4 List Users . 30
13.5 Ban/Unban User . 30
13.6 Global Purge User . 31
13.7 Search User . 32
13.8 Mute User . 32
13.9 Report User . 33
13.10 Shadow Ban User . 34
13.11 List User Notifications . 35
13.12 Mark All Notification As Read . 36
13.13 Set User Notification As Read . 37
13.14 Set User Notification As Read (By ChatEventId) . 38
13.15 Delete User Notification . 39
13.16 Delete User Notification By ChatEventId . 40

i

14 Chat Client 41
14.1 Create Room . 41
14.2 Get Room Details . 42
14.3 Get Room Extended Details . 43
14.4 Get Room Details By Custom ID . 45
14.5 Delete Room . 46
14.6 Update Room . 46
14.7 Update and Close Room . 48
14.8 List Rooms . 49
14.9 List Room Participants . 50
14.10 List User Subscribed Rooms . 50
14.11 List Event History . 51
14.12 List Previous Events . 52
14.13 List Event By Type . 53
14.14 List Event By Timestamp . 54
14.15 Join Room . 55
14.16 Join Room by CustomId . 56
14.17 Exit Room . 58
14.18 Get Updates . 59
14.19 Get More Updates . 60
14.20 Execute Command . 61
14.21 Send Quoted Reply . 63
14.22 Send Threaded Reply . 64
14.23 List Messages By User . 66
14.24 Purge Message . 66
14.25 Flag Event As Locally Deleted . 67
14.26 Permanently Delete Event . 68
14.27 Delete All Events . 69
14.28 List Messages of User . 69
14.29 Report A Message . 70
14.30 React to an Event . 71
14.31 Report User in Room . 73
14.32 Bounce User . 74
14.33 Shadowban User . 75
14.34 Mute User . 76
14.35 Search Event History . 77
14.36 Update Chat Event . 79
14.37 Start Listening to Chat Updates . 80
14.38 Stop Listening to Chat Updates . 81
14.39 Approve Event . 82
14.40 Reject Event . 83
14.41 List All Messages In Moderation Queue . 84

15 Comment Client 85
15.1 Create or Update Conversation . 85
15.2 Get Conversation by ID . 87
15.3 Find Conversation by CustomID . 88
15.4 List Conversations . 90
15.5 Batch Get Conversation Details . 91
15.6 React to Conversation Topic . 92
15.7 Create and Publish Comment . 94
15.8 Reply to Comment . 96
15.9 List Replies . 98
15.10 Get Comment by ID . 100

ii

15.11 List Comments . 101
15.12 List Replies Batch . 103
15.13 React to Comment(“Like”) . 104
15.14 Vote on Comment . 106
15.15 Report Comment . 108
15.16 Update Comment . 109
15.17 Flag Comment As Deleted . 111
15.18 Delete Comment (permanent) . 112
15.19 Delete Conversation . 113
15.20 List Comments in Moderation Queue . 114
15.21 Approve/Reject Message in Queue . 115

16 Copyright & License 119

iii

iv

Sportstalk SDK -iOS

The Sportstalk SDK is a helpful wrapper around the Sportstalk API

The set of SDKs and source (iOS, Android, and JS) is here: https://gitlab.com/sportstalk247/

pod 'SportsTalk_iOS_SDK', :git=> 'https://gitlab.com/sportstalk247/sdk-ios-swift.git'

You will need to register with SportsTalk and get an API Key in order to use SDK functions.

CONTENTS 1

http://https://apiref.sportstalk247.com/?version=latest
https://gitlab.com/sportstalk247/

Sportstalk SDK -iOS

2 CONTENTS

CHAPTER

ONE

GETTING STARTED: SETTING UP THE SDK

This Sportstalk SDK is meant to power custom chat applications. Sportstalk does not enforce any restricitons on your
UI design, but instead empowers your developers to focus on the user experience without worrying about the underlying
chat behavior.

Sportstalk is an EVENT DRIVEN API. When new talk events occur, the SDK will trigger appropriate callbacks, if set.

import SportsTalk_iOS_SDK

// First you 'll need to create a ClientConfig class that you can use later on
let config = ClientConfig(appId: "YourAppId", authToken: "YourApiKey", endpoint: "Your␣
→˓URL")
let client = UserClient(config: config)

// You can set config to have your own endpoint or use the default endpoint like so
let config = ClientConfig(appId: "YourAppId", authToken: "YourApiKey")

3

Sportstalk SDK -iOS

4 Chapter 1. GETTING STARTED: Setting up the SDK

CHAPTER

TWO

IMPLEMENT CUSTOM JWT

You can instantiate a JWTProvider instance and provide a token refresh action function that returns a new token.

import SportsTalk_iOS_SDK

// First you 'll need to create a ClientConfig class that you can use later on
let config = ClientConfig(appId: "YourAppId", authToken: "YourApiKey", endpoint: "Your␣
→˓URL")
// Prepare JWTProvider
let jwtProvider = JWTProvider(

tokenRefreshFunction: { completion in
DispatchQueue.main.async {

let newToken = doPerformFetchNewToken() // Developer may perform a long-
→˓running operation to generate a new JWT

completion(newToken)
}

}
)
// Set custom JWTProvider
SportsTalkSDK.setJWTProvider(config: config, provider: jwtProvider)

You can also directly specify the JWT value by calling JWTProvider.setToken(newToken). There is also a function pro-
vided to explicitly refresh token by calling JWTProvider.refreshToken(), which will trigger the provided token refresh
action above to fetch a new token and will automatically add that on the SDK.

// Continuation from above

client.createRoom(request) { (code, message, kind, room) in
// ...
// Handle Unauthorized Error
// - Attempt request refresh token
//
if code == 401 {

jwtProvider.refreshToken()
// Then, probably prompt for another retry attempt again after a␣

→˓shortwhile(this is to ensure that the token gets refreshed first before retry␣
→˓attempt)

}
}

Once the User Token has been added to the SDK, the SDK will automatically append it to all requests.

5

Sportstalk SDK -iOS

6 Chapter 2. Implement Custom JWT

CHAPTER

THREE

CALLBACK FUNCTION OVERVIEW

Each and every api function has its callback, when the api is called you will get the response in the callback. You can
use this to remove loading screens, hide advertisements, and so on.

7

Sportstalk SDK -iOS

8 Chapter 3. Callback Function Overview

CHAPTER

FOUR

CREATING/UPDATING A USER

Invoke this API method if you want to create a user or update an existing user.

When users send messages to a room the user ID is passed as a parameter. When you retrieve the events from a room,
the user who generated the event is returned with the event data, so it is easy for your application to process and render
chat events with minimal code.

import SportsTalk_iOS_SDK

let client = UserClient(config: config)

// Almost all api is designed to have a request and response model.

func createUser() {
// To create a request, make use of the Services convenience class
let request = UserRequest.CreateUpdateUser()
request.userid = "SomeUserId"
request.handle = "Sam"
request.displayname = "Sam"
request.pictureurl = URL(string: <some_url>)
request.profileurl = URL(string: <some_url>)

client.createOrUpdateUser(request) { (code, message, kind, user) in
// where; code: Int?, message: String?, kind: String?, user: User?
// Save user

}
}

9

Sportstalk SDK -iOS

10 Chapter 4. Creating/Updating a user

CHAPTER

FIVE

JOINING A ROOM

let client = ChatClient(config: config)

func JoinRoom(_ room: ChatRoom, as user: User) {
let request = ChatRequest.JoinRoom()
request.roomid = room.id
request.userid = user.userid
request.displayname = user.displayname

client.joinRoom(request) { (code, message, _, response) in
// where response is model JoinChatRoomResponse
// Process response

}
}

11

Sportstalk SDK -iOS

12 Chapter 5. Joining a Room

CHAPTER

SIX

JOINING A ROOM USING CUSTOM ID

let client = ChatClient(config: config)

func JoinRoom(_ room: ChatRoom, as user: User) {
let request = ChatRequest.JoinRoomByCustomId()
request.userid = user.userid
request.displayname = user.displayname
request.customid = room.customid

client.joinRoomByCustomId(request) { (code, message, _, response) in
// where response is model called JoinChatRoomResponse
// Process response

}
}

13

Sportstalk SDK -iOS

14 Chapter 6. Joining a Room using Custom ID

CHAPTER

SEVEN

GETTING ROOM UPDATES

To manually get room updates, use ChatClient().getUpdates(request:completionHandler)

let client = ChatClient(config: config)

func getUpdates(_ room: ChatRoom) {
let request = ChatRequest.GetUpdates()
request.roomid = room.id
request.limit = 20

client.getUpdates(request) { (code, message, _, response) in
// where response is model called GetUpdatesResponse
// Get an array of events from response.events

}
}

15

Sportstalk SDK -iOS

16 Chapter 7. Getting room updates

CHAPTER

EIGHT

START/STOP GETTING EVENT UPDATES

Get periodic updates from room by using func startListeningToChatUpdates(config: ChatRequest.
StartListeningToChatUpdates, completionHandler: @escaping Completion<[Event]>) Only new
events will be emitted, so it is up to you to collect the new events. To stop getting updates, simply call client.
stopListeningToChatUpdates() anytime.

Note: Updates are received every 500 milliseconds. You can configure the delivery of messages by setting ChatRe-
quest.StartListeningToChatUpdates Losing reference to client will stop the eventUpdates

let client = ChatClient(config: config)
var events = [Event]()

func receiveUpdates(from room: ChatRoom) {
let eventUpdatesConfig = ChatRequest.StartListeningToChatUpdates(roomid: room.id!)
client.startListeningToChatUpdates(config: eventUpdatesConfig) { (code, message, _,␣

→˓event) in
if let event = event {

events.append(event)
}

// Debug pulse
print("------------")
print(code == 200 ? "pulse success" : "pulse failed")
print((event?.count ?? 0) > 0 ? "received \(event?.count) event" : "No new events

→˓")
print("------------")
receivedCode = code

}
}

func stopUpdates(from room: ChatRoom) {
// Ideally call this on viewDidDisappear() and deinit()
let roomid = room.id!
client.stopListeningToChatUpdates(roomid)

}

17

Sportstalk SDK -iOS

18 Chapter 8. Start/Stop Getting Event Updates

CHAPTER

NINE

SENDING A MESSAGE

Use SAY command to send a message to the room.

example: SAY Hello World! or simply Hello World!

Perform ACTIONS by using / character

example: /dance nicole

• User sees: You dance with Nicole

• Nicole sees: (user) dances with you

• Everyone else sees: (user) dances with Nicole

This requires that the action command dance is on the approved list of commands and Nicole is the handle of a partic-
ipant in the room, and that actions are allowed in the room

let client = ChatClient(config: config)

func send(message: String, to room: ChatRoom, as user: User) {
// See for list of commands

do {
let request = ChatRequest.ExecuteChatCommand()
request.roomId = room.id
request.command = "SAY \(message)"
request.userid = user.userid

client.executeChatCommand(request) { (code, message, _, response) in
// where response is model ExecuteChatCommandResponse
// Process response

}
} catch {
// Handle errors

}
}

For use of these events in action, see the demo page: https://www.sportstalk247.com/demo.html

19

https://www.sportstalk247.com/demo.html

Sportstalk SDK -iOS

20 Chapter 9. Sending A Message

CHAPTER

TEN

CONVERSATIONS AND COMMENTS

let client = CommentClient(config: config)

func getConversations() {
let request = CommentRequest.ListConversations()

client.listConversations(request) { (code, message, _, response) in
// where response is model called ListConversationsResponse
// Get an array of conversations from response.conversations

}
}

21

Sportstalk SDK -iOS

22 Chapter 10. Conversations and Comments

CHAPTER

ELEVEN

THE BARE MINIMUM

The only critical events that you need to handle are ExecuteChatCommand which will be called for each new chat
event and PurgeMessage which will be called when purge commands are issued to clear messages that violate content
policy.

You will probably also want to use ExecuteChatCommand to show/hide any loading messages.

The easiest way to see how these event works is to see the demo page: https://www.sportstalk247.com/demo.html

23

https://www.sportstalk247.com/demo.html

Sportstalk SDK -iOS

24 Chapter 11. The Bare Minimum

CHAPTER

TWELVE

CHAT APPLICATION BEST PRACTICES

Do not ‘fire and forget’ chat messages. Most chat applications require some level of moderation. Your UI should make
sure to keep track of message metadata such as:

• Message ID

• User Handle for each message.

• User ID for each message. In the event of moderation or purge events, your app will need to be able to find and
remove purged messages.

• Timestamp

Make sure you handle errors for sending messages in case of network disruption.

Enable/Disable debug mode with SportsTalkSDK.shared.debugMode = true/false

25

Sportstalk SDK -iOS

26 Chapter 12. Chat Application Best Practices

CHAPTER

THIRTEEN

USER CLIENT

13.1 Create/Update User

func createOrUpdateUser(_ request: UserRequest.CreateUpdateUser, completionHandler:␣
→˓@escaping Completion<User>)

All users must have a Handle. The display name is optional. If you create a user and don’t provide a handle, but you do
provide a display name, a handle will be generated for you based on the provided display name. The generated handle
will not be able to contain all characters or spaces, and could have numbers appended to the end.

Invoke this API method if you want to create a user or update an existing user.

Do not use this method to convert an anonymous user into a known user. Use the Convert User api method instead.

When users send messages to a room the user ID is passed as a parameter. When you retrieve the events from a room,
the user who generated the event is returned with the event data, so it is easy for your application to process and render
chat events with minimal code.

Parameters

• userid: (required) If the userid is new then the user will be created. If the userid is already in use in the database
then the user will be updated.

• handle: (optional) A unique string representing the user that is easy for other users to type. Example @George-
Washington could be the handle but Display Name could be “Wooden Teef For The Win”.

• displayname: (optional) This is the desired name to display, typically the real name of the person.

• pictureurl: (optional) The URL to the picture for this user.

• profileurl: (optional) The profileurl for this user.

Note about handles

• If you are creating a user and you don’t specify a handle, the system will generate one for you (using Display
Name as basis if you provide that).

• If you request a handle and it’s already in use a new handle will be generated for you by adding a number from
1-99 and returned.

• If the handle can’t be generated because all the options 1-99 on the end of it are taken then the request will be
rejected with BadRequest status code.

• Only these characters may be used:
“abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_”

Request Model: UserRequest.CreateUpdateUser

27

Sportstalk SDK -iOS

public class CreateUpdateUser {
public var userid: String?
public var handle: String?
public var displayname: String?
public var pictureurl: URL?
public var profileurl: URL?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var banexpires: Date?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var muted: Bool?
public var muteexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

13.2 Delete User

func deleteUser(_ request: UserRequest.DeleteUser, completionHandler: @escaping␣
→˓Completion<DeleteUserResponse>)

Deletes the specified user.

All rooms with messages by that user will have the messages from this user purged in the rooms.

Parameters

• userid: (required) is the app specific User ID provided by your application.

Warning This method requires authentication

Request Model: UserRequest.DeleteUser

public class DeleteUser {
public var userid: String?

}

Response Model: DeleteUserResponse

28 Chapter 13. User Client

Sportstalk SDK -iOS

public struct DeleteUserResponse: Codable {
public var kind: String?
public var user: User?

}

13.3 Get User Details

func getUserDetails(_ request: UserRequest.GetUserDetails, completionHandler: @escaping␣
→˓Completion<User>)

Get the details about a User.

This will return all the information about the user.

Parameters

• userid: (required) is the app specific User ID provided by your application.

Warning This method requires authentication

Request Model: UserRequest.GetUserDetails

public class GetUserDetails {
public var userid: String?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var banexpires: Date?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var muted: Bool?
public var muteexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

13.3. Get User Details 29

Sportstalk SDK -iOS

13.4 List Users

func listUsers(_ request: UserRequest.ListUsers, completionHandler: @escaping Completion
→˓<ListUsersResponse>)

Gets a list of users.

Use this method to cursor through a list of users. This method will return users in the order in which they were created,
so it is safe to add new users while cursoring through the list.

Parameters

• cursor: (optional) Each call to ListUsers will return a result set with a ‘nextCursor’ value. To get the next page of
users, pass this value as the optional ‘cursor’ property. To get the first page of users, omit the ‘cursor’ argument.

• limit: (optional) You can omit this optional argument, in which case the default limit is 200 users to return.

Warning This method requires authentication

Request Model: UserRequest.ListUsers

public class ListUsers {
public var cursor: String?
public var limit: Int? = 200

}

Response Model: ListUsersResponse

public struct ListUsersResponse: Codable {
public var kind: String?
public var cursor: String?
public var users: [User]

}

13.5 Ban/Unban User

func setBanStatus(_ request: UserRequest.SetBanStatus, completionHandler: @escaping␣
→˓Completion<User>)

Will toggle the user’s banned flag.

Parameters

• userid: (required) The applicaiton provided userid of the user to ban

• banned: (required) Boolean. If true, user will be set to banned state. If false, wbe set to non-banned state.

Request Model: UserRequest.SetBanStatus

public class SetBanStatus {
public var userid: String?
public var banned: Bool?

}

Response Model: User

30 Chapter 13. User Client

Sportstalk SDK -iOS

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var banexpires: Date?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var muted: Bool?
public var muteexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

13.6 Global Purge User

func globallyPurgeUserContent(_ request: UserRequest.GloballyPurgeUserContent,␣
→˓completionHandler: @escaping Completion<GlobalPurgeReponse>)

Will purge all chat content published by the specified user

Parameters

• userid: (required) ID of the User who’s content is about to be purged

• byuserid: (required) ID of the User who is about to perform the purge action(requires admin privileges)

Request Model: UserRequest.GloballyPurgeUserContent

public class GloballyPurgeUserContent {
public var userid: String?
public var byuserid: String?

}

Response Model: GlobalPurgeReponse

public struct GlobalPurgeReponse: Codable {}

13.6. Global Purge User 31

Sportstalk SDK -iOS

13.7 Search User

func searchUser(_ request: UserRequest.SearchUser, completionHandler: @escaping␣
→˓Completion<ListUsersResponse>)

Searches the users in an app

Use this method to cursor through a list of users. This method will return users in the order in which they were created,
so it is safe to add new users while cursoring through the list.

Parameters

• cursor: (optional) Each call to ListUsers will return a result set with a ‘nextCursor’ value. To get the next page of
users, pass this value as the optional ‘cursor’ property. To get the first page of users, omit the ‘cursor’ argument.

• limit: (optional) You can omit this optional argument, in which case the default limit is 200 users to return.

• name: (optional) Provide part of a name to search the user name field

• handle: (optional) Provide part of a handle to search by handle

• userid: (optional) Provide part of a userid to search by userid

Note At least one of these parameters is required; - userid - handle - name

Warning This method requires authentication

Request Model: UserRequest.SearchUser

public class SearchUser {
public var cursor:String?
public var limit:Int?
public var name:String?
public var handle:String?
public var userid:String?

}

Response Model: ListUsersResponse

public struct ListUsersResponse: Codable {
public var kind: String?
public var cursor: String?
public var users: [User]

}

13.8 Mute User

func muteUser(_ request: ChatRequest.MuteUser, completionHandler: @escaping Completion
→˓<ChatRoom>)

Will toggle the user’s mute effect

A muted user is in a read-only state. The muted user can join chat rooms and observe but cannot communicate. This
method applies mute on the global level (applies to all talk contexts). You can optionally specify an expiration time.
If the expiration time is specified, then each time the shadow banned user tries to send a message the API will check if
the shadow ban has expired and will lift the ban.

32 Chapter 13. User Client

Sportstalk SDK -iOS

Paramters

• userid: (required) The applicaiton provided userid of the user to ban

• applyeffect: (required) true or false. If true, user will be set to muted state. If false, will be set to non-banned
state.

• expireseconds: (optional) Duration of mute in seconds. If specified, the mute will be lifted when this time is
reached. If not specified, mute effect remains until explicitly lifted. Maximum seconds is a double byte value.

Request Model: UserRequest.MuteUser

public class MuteUser {
public var userid: String?
public var applyeffect: Bool?
public var expireseconds: Double?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var banexpires: Date?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var muted: Bool?
public var muteexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

13.9 Report User

func reportUser(_ request: UserRequest.ReportUser, completionHandler: @escaping␣
→˓Completion<User>)

Paramters

• userid: (required) This is the application specific user ID of the user reporting the first user.

• reporttype: (required) Possible values: “abuse”, “spam”. SPAM is unsolicited commercial messages and abuse
is hate speach or other unacceptable behavior.

RESPONSE CODES

• 200 | Success : Request completed successfully

• 404 | Not Found : The specified user or application could not be found

13.9. Report User 33

Sportstalk SDK -iOS

• 409 | Conflict : The request was rejected because user reporting is not enabled for the application

Request Model: UserRequest.ReportUser

public class ReportUser {
public var userid: String?
public var reporttype = "abuse"

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var banexpires: Date?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var muted: Bool?
public var muteexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

13.10 Shadow Ban User

func setShadowBanStatus(_ request: UserRequest.SetShadowBanStatus, completionHandler:␣
→˓@escaping Completion<User>)

Will toggle the user’s shadow banned flag

A Shadow Ban user can send messages into a chat room, however those messages are flagged as shadow banned. This
enables the application to show those messags only to the shadow banned user, so that that person may not know they
were shadow banned. This method shadow bans the user on the global level (or you can use this method to lift the ban).
You can optionally specify an expiration time. If the expiration time is specified, then each time the shadow banned
user tries to send a message the API will check if the shadow ban has expired and will lift the ban.

Parameters

• userid: (required) The applicaiton provided userid of the user to ban

• shadowban: (required) true or false. If true, user will be set to banned state. If false, will be set to non-banned
state.

• expireseconds: (optional) Duration of shadowban value in seconds. If specified, the shadow ban will be lifted
when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a
double byte value.

Request Model: UserRequest.ReportUser

34 Chapter 13. User Client

Sportstalk SDK -iOS

public class SetShadowBanStatus {
public var userid: String?
public var shadowban: Bool?
public var expireseconds: Int?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var banexpires: Date?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var muted: Bool?
public var muteexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

13.11 List User Notifications

func listUserNotifications(_ request: UserRequest.ListUserNotifications,␣
→˓completionHandler: @escaping Completion<ListNotificationResponse>)

Returns a list of user notifications

Parameters

• userid: (required) Return only notifications for this user

• filternotificationtypes: (optional) Return only events of the specified type. Pass the argument more than once to
fetch multiple types of notifications at once.

– chatmention

– chatquote

– chatreply

– commentmention

– commentquote

– commentreply

• includeread: (optional | default = false) If true, notifications that have already been read are returned

13.11. List User Notifications 35

Sportstalk SDK -iOS

• filterchatroomid: (optional) If provided, this will only return notifications associated with the specified chat room
using the ChatRoom ID (exact match)

• filterchatroomcustomid: (optional) If provided, this will only return notifications associated with the specified
chat room using the Custom ID (exact match)

• limit: (optional) Default is 50, maximum is 200. Limits how many items are returned.

• cursor: (optional) Leave blank to start from the beginning of the result set; provide the value from the previous
returned cursor to resume cursoring through the next page of results

Request Model: UserRequest.ListUserNotifications

public class ListUserNotifications {
public var userid: String?
public var filternotificationtypes: String?
public var includeread: Bool? = false
public var filterchatroomid: String?
public var filterchatroomcustomid: String?
public var limit: Int? = 50
public var cursor: String? = ""

}

Response Model: ListNotificationResponse

public struct ListNotificationResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int?
public var notifications: [UserNotification]?

}

13.12 Mark All Notification As Read

func markAllNotificationAsRead(_ request: UserRequest.MarkAllNotificationAsRead,␣
→˓completionHandler: @escaping Completion<UserNotification>)

This marks all of the user’s notifications as read with one API call only. Due to caching, a call to List User Notifications
may still return items for a short time. Set delete = true to delete the notification instead of marking it read. This should
be used for most use cases.

Parameters

• userid: (required) The ID of the user marking the notification as read.

• delete: (optional) [default=true] If true, this deletes the notification. If false, it marks it read but does not delete
it.

Request Model: UserRequest.MarkAllNotificationAsRead

public class MarkAllNotificationAsRead {
public var userid: String?
public var delete: Bool? = true

}

36 Chapter 13. User Client

Sportstalk SDK -iOS

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

13.13 Set User Notification As Read

func setUserNotificationAsRead(_ request: UserRequest.SetUserNotificationAsRead,␣
→˓completionHandler: @escaping Completion<UserNotification>)

Set User Notification as Read

Unless your workflow must support use of read notifications, instead use `func deleteUserNotification(_
request:completionHandler:)`

This marks a notification as being in READ status. That will prevent the notification from being returned in a call to List
User Notifications unless the default filters are overridden. Notifications that are marked as read will be automatically
deleted after some time.

Calling this over and over again for an event, or calling it on events where the reader is not the person that the reply is
directed to, or calling it against events that are not type ChatReply or ChatQuote is inappropriate use of the API

Parameters

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• notificationid: (required) The unique ID of the notification being updated

• read: (required) The read status (true/false) for the notification. You can pass false to mark the notification as
unread

Request Model: UserRequest.SetUserNotificationAsRead

public class SetUserNotificationAsRead {
public var userid: String?
public var notificationid: String?
public var read: Bool? = false

}

Response Model: UserNotification

13.13. Set User Notification As Read 37

Sportstalk SDK -iOS

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

13.14 Set User Notification As Read (By ChatEventId)

func setUserNotificationAsReadByEventId(_ request: UserRequest.
→˓SetUserNotificationAsReadByChatEventId, completionHandler: @escaping Completion
→˓<UserNotification>)

Unless your workflow must support use of read notifications, use `func deleteUserNotification(_
request:completionHandler:)` instead.

• This marks a notification as being in READ status.

• That will prevent the notification from being returned in a call to List User Notifications unless the default filters
are overridden.

• Notifications that are marked as read will be automatically deleted after some time.

• Only call this once per event. Only call this for events of type ChatReply or ChatQuote

Parameters

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• chateventid: (required) The unique ID of the notification’s chatEvent.

• read: (required) The read status (true/false) for the notification. You can pass false to mark the notification as
unread.

Request Model: UserRequest.SetUserNotificationAsReadByChatEventId

public class SetUserNotificationAsReadByChatEventId {
public var userid: String?
public var eventid: String?
public var read: Bool? = false

}

Response Model: UserNotification

38 Chapter 13. User Client

Sportstalk SDK -iOS

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

13.15 Delete User Notification

func deleteUserNotification(_ request: UserRequest.DeleteUserNotification,␣
→˓completionHandler: @escaping Completion<UserNotification>)

Deletes a User Notification

Immediately deletes a user notification. Unless your workflow specifically implements access to read notifications, you
should delete notifications after they are consumed.

Parameters

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• notificationid: (required) The unique ID of the notification being updated.

Request Model: UserRequest.DeleteUserNotification

public class DeleteUserNotification {
public var userid: String?
public var notificationid: String?

}

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?

(continues on next page)

13.15. Delete User Notification 39

Sportstalk SDK -iOS

(continued from previous page)

public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

13.16 Delete User Notification By ChatEventId

func deleteUserNotificationByEventId(_ request: UserRequest.
→˓DeleteUserNotificationByChatEventId, completionHandler: @escaping Completion
→˓<UserNotification>)

Deletes a User Notification

Immediately deletes a user notification. Unless your workflow specifically implements access to read notifications, you
should delete notifications after they are consumed.

Parameters

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• chateventid: (required) The unique ID of the notification’s chatEvent.

Request Model: UserRequest.DeleteUserNotificationByChatEventId

public class DeleteUserNotificationByChatEventId {
public var userid: String?
public var chateventid: String?

}

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

40 Chapter 13. User Client

CHAPTER

FOURTEEN

CHAT CLIENT

14.1 Create Room

func createRoom(_ request: ChatRequest.CreateRoom, completionHandler: @escaping␣
→˓Completion<ChatRoom>)

Creates a new chat room

Parameters

• name: (required) The name of the room

• customid: (optional) A customid for the room. Can be unused, or a unique key.

• description: (optional) The description of the room

• moderation: (required) The type of moderation.

– pre - marks the room as Premoderated

– post - marks the room as Postmoderated

• enableactions: (optional) [true/false] Turns action commands on or off

• enableenterandexit: (optional) [true/false] Turn enter and exit events on or off. Disable for large rooms to reduce
noise.

• enableprofanityfilter: (optional) [default=true / false] Enables profanity filtering.

• enableautoexpiresessions: (optional) [defaulttrue / false] Enables automatically expiring idle sessions, which
removes inactive users from the room.

• delaymessageseconds: (optional) [default=0] Puts a delay on messages from when they are submitted until they
show up in the chat. Used for throttling.

• maxreports: (optiona) Default is 3. This is the maximum amount of user reported flags that can be applied to a
message before it is sent to the moderation queue

Warning This method requires authentication

Request Model: ChatRequest.CreateRoom

public class CreateRoom {
public var name: String?
public var customid: String?
public var description: String?
public var moderation: String?
public var enableactions: Bool?

(continues on next page)

41

Sportstalk SDK -iOS

(continued from previous page)

public var enableenterandexit: Bool?
public var enableprofanityfilter: Bool?
public var roomisopen: Bool?
public var maxreports: Int? = 3

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.2 Get Room Details

func getRoomDetails(_ request: ChatRequest.GetRoomDetails, completionHandler: @escaping␣
→˓Completion<ChatRoom>)

Get the details for a room

This will return all the settings for the room and the participant count but not the participant list

Parameters

• roomid: (required) Room id of a specific room againts which you want to fetch the details

Warning This method requires authentication

Request Model: ChatRequest.GetRoomDetails

42 Chapter 14. Chat Client

Sportstalk SDK -iOS

public class GetRoomDetails {
public var roomid: String?

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.3 Get Room Extended Details

func getRoomExtendedDetails(_ request: ChatRequest.GetRoomExtendedDetails,␣
→˓completionHandler: @escaping Completion<ChatRoom>)

Get the details for a room

This method lets you specify a list of entity types to return. You can use it to get room details as well as statistics and
other data associated with a room that is not part of the room entity.

You must specify one or more roomid values or customid values. You may optionally provide both roomid and customid
values. You may not request more than 20 rooms at once total. You must specify at least one entity type.

In the future, each entity requested will count towards your API usage quota, so don’t request data you will not be using.

The response will be a list of RoomExtendedDetails objects. They contain properties such as room, mostrecentmes-
sagetime, and inroom. These properties will be null if their entity type is not specified

Parameters

• roomid: (required) Room id of a specific room againts which you want to fetch the details

14.3. Get Room Extended Details 43

Sportstalk SDK -iOS

• customid: (optional) A list of room customIDs.

• entity: (required) Specify one or more ENTITY TYPES to include in the response. Use one or more of the types
below.

– room: This returns the room entity.

– numparticipants: This returns number of active participants / room subscribers.

– lastmessagetime: This returns the time stamp for the most recent event that is a visible displayable message
(speech, quote, threaded reply or announcement).

Warning This method requires authentication

Request Model: ChatRequest.GetRoomExtendedDetails

public class GetRoomExtendedDetails {
public var roomid: String?
public var customid: String?
public var entity: [RoomEntityType]?

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

44 Chapter 14. Chat Client

Sportstalk SDK -iOS

14.4 Get Room Details By Custom ID

func getRoomDetailsByCustomId(_ request: ChatRequest.GetRoomDetailsByCustomId,␣
→˓completionHandler: @escaping Completion<ChatRoom>)

Get the details for a room

This will return all the settings for the room and the participant count but not the participant list

Parameters

• customid: Custom Id of a specific room againts which you want to fetch the details.

Warning This method requires authentication

Request Model: ChatRequest.GetRoomDetails

public class GetRoomDetailsByCustomId {
public var customid: String?

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.4. Get Room Details By Custom ID 45

Sportstalk SDK -iOS

14.5 Delete Room

func deleteRoom(_ request: ChatRequest.DeleteRoom, completionHandler: @escaping␣
→˓Completion<DeleteChatRoomResponse>)

Permanently deletes a chat room

This cannot be reversed. This command permanently deletes the chat room and all events in it.

Parameters

• roomid: (required) that you want to delete

Warning This method requires authentication

Request Model: ChatRequest.DeleteRoom

public class DeleteRoom {
public var roomid: String?

}

Response Model: DeleteChatRoomResponse

public struct DeleteChatRoomResponse: Codable {
public var kind: String?
public var deletedEventsCount: Int64?
public var room: ChatRoom?

}

14.6 Update Room

func updateRoom(_ request: ChatRequest.UpdateRoom, completionHandler: @escaping␣
→˓Completion<ChatRoom>)

Updates an existing room

Parameters

• roomid: (required) The ID of the existing room.

• userid: (optional) The owner of the room.

• name: (optional) The name of the room.

• description: (optional) The description of the room.

• moderation: (optional) [premoderation/postmoderation] Defaults to post-moderation.

• enableactions: (optional) [true/false] Turns action commands on or off.

• enableenterandexit: (optional) [true/false] Turn enter and exit events on or off. Disable for large rooms to reduce
noise.

• enableprofanityfilter: (optional) [default=true / false] Enables profanity filtering.

• enableautoexpiresessions: (optional) [defaulttrue / false] Enables automatically expiring idle sessions, which
removes inactive users from the room.

46 Chapter 14. Chat Client

Sportstalk SDK -iOS

• delaymessageseconds: (optional) [default=0] Puts a delay on messages from when they are submitted until they
show up in the chat. Used for throttling

• roomisopen: (optional) [true/false] If false, users cannot perform any commands in the room, chat is suspended.

• throttle: (optional) [default=0] This is the number of seconds to delay new incomming messags so that the chat
room doesn’t scroll messages too fast

Warning This method requires authentication

Request Model: ChatRequest.UpdateRoom

public class UpdateRoom {
public var roomid: String?
public var name: String?
public var description: String?
public var customid: String?
public var moderation: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int?
public var roomisopen: Bool?
public var throttle: Int?
public var userid: String?

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.6. Update Room 47

Sportstalk SDK -iOS

14.7 Update and Close Room

func updateCloseRoom(_ request: ChatRequest.UpdateRoomCloseARoom, completionHandler:␣
→˓@escaping Completion<ChatRoom>)

Updates an existing room

Parameters

• roomid: (required) The ID of the existing room

• name: (optional) The name of the room

• description: (optional) The description of the room

• moderation: (optional) [premoderation/postmoderation] Defaults to post-moderation.

• enableactions: (optional) [true/false] Turns action commands on or off

• enableenterandexit: (optional) [true/false] Turn enter and exit events on or off. Disable for large rooms to reduce
noise.

• enableprofanityfilter: (optional) [default=true / false] Enables profanity filtering.

• delaymessageseconds: (optional) [default=0] Puts a delay on messages from when they are submitted until they
show up in the chat. Used for throttling.

• roomisopen: (optional) [true/false] If false, users cannot perform any commands in the room, chat is suspended.

Warning This method requires authentication

Request Model: ChatRequest.UpdateRoomCloseARoom

public class UpdateRoomCloseARoom {
public var roomid: String?
public var name: String?
public var description: String?
public var moderation: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int?
public var roomisopen: Bool? = false
public var userid: String?

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?

(continues on next page)

48 Chapter 14. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.8 List Rooms

func listRooms(_ request: ChatRequest.ListRooms, completionHandler: @escaping Completion
→˓<ListRoomsResponse>)

List all the available public chat rooms

Rooms can be public or private. This method lists all public rooms that everyone can see.

Parameters

• cursor: (optional) The first time you call list rooms, omit this property to start from the beginning. Call the
method again passing in the value returned in the cursor field of the response to get the next page of results. If
there are more results available, more will be true.

• limit: (optional) Specify the number of items to return. Default is 200

Warning This method requires authentication

Request Model: ChatRequest.ListRooms

public class ListRooms {
public var cursor: String?
public var limit: Int = 200

}

Response Model: ListRoomsResponse

public struct ListRoomsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var rooms: [ChatRoom]

}

14.8. List Rooms 49

Sportstalk SDK -iOS

14.9 List Room Participants

func listRoomParticipants(_ request: ChatRequest.ListRoomParticipants,␣
→˓completionHandler: @escaping Completion<ListChatRoomParticipantsResponse>)

List all the participants in the specified room

Use this method to cursor through the people who have subscribe to the room.

To cursor through the results if there are many participants, invoke this function many times. Each result will return a
cursor value and you can pass that value to the next invokation to get the next page of results. The result set will also
include a next field with the full URL to get the next page, so you can just keep reading that and requesting that URL
until you reach the end. When you reach the end, no more results will be returned or the result set will be less than
maxresults and the next field will be empty.

Parameters

• roomid: (required) room id that you want to list the participants

• cursor: (optional) you can pass that value to the next invokation to get the next page of results

• limit: (optional) default is 200

Warning This method requires authentication

Request Model: ChatRequest.ListRoomParticipants

public class ListRoomParticipants {
public var roomid: String?
public var cursor: String? = ""
public var limit: Int? = 200

}

Response Model: ListChatRoomParticipantsResponse

public struct ListChatRoomParticipantsResponse: Codable {
public var kind: String?
public var cursor: String?
public var participants: [ChatRoomParticipant]

}

14.10 List User Subscribed Rooms

func listUserSubscribedRooms(_ request: ChatRequest.ListUserSubscribedRooms,␣
→˓completionHandler: @escaping Completion<ListUserSubscribedRoomResponse>)

List the rooms the user is subscribed to.

Use this method to cursor through all the rooms the user is subscribed to. This will include all rooms. If you want
to build a private messaging experience, you can put custom tags on the rooms to separate out which are for private
messenger and which are public group rooms.

To cursor through the results if there are many participants, invoke this function many times. Each result will return a
cursor value and you can pass that value to the next invokation to get the next page of results. The result set will also
include a next field with the full URL to get the next page, so you can just keep reading that and requesting that URL

50 Chapter 14. Chat Client

Sportstalk SDK -iOS

until you reach the end. When you reach the end, no more results will be returned or the result set will be less than
maxresults and the next field will be empty.

Parameters

• userid: (required)

• cursor: (optional) you can pass that value to the next invokation to get the next page of results

• limit: (optional) default is 200

Warning This method requires authentication

Request Model: ChatRequest.ListUserSubscribedRooms

public class ListUserSubscribedRooms {
public var userid: String?
public var cursor: String? = ""
public var limit: Int? = 200

}

Response Model: ListUserSubscribedRoomsResponse

public struct ListUserSubscribedRoomsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var subscriptions: [ChatSubscription] = []

}

14.11 List Event History

func listEventHistory(_ request: ChatRequest.ListEventHistory, completionHandler:␣
→˓@escaping Completion<ListEventsResponse>)

• This method enables you to download all of the events from a room in large batches. It should only be used if
doing a data export.

• This method returns a list of events sorted from oldest to newest.

• This method returns all events, even those in the inactive state

Parameters

• roomid: (required) Room id where you want event history to be listed

• limit: (optional) default is 100, maximum 2000

• cursor: (optional) If not provided, the most recent events will be returned. To get older events, call this method
again using the cursor string returned from the previous call.

Request Model: ChatRequest.ListEventHistory

public class ListEventHistory {
public var roomid: String?
public var cursor: String? = ""

(continues on next page)

14.11. List Event History 51

Sportstalk SDK -iOS

(continued from previous page)

public var limit: Int? = 100
}

Response Model: ListEventsResponse

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var events: [Event]

}

14.12 List Previous Events

func listPreviousEvents(_ request: ChatRequest.ListPreviousEvents, completionHandler:␣
→˓@escaping Completion<ListEventsResponse>)

This method allows you to go back in time to “scroll” in reverse through past messages. The typical use case for this
method is to power the scroll-back feature of a chat window allowing the user to look at recent messages that have
scrolled out of view. It’s intended use is to retrieve small batches of historical events as the user is scrolling up.

• This method returns a list of events sorted from newest to oldest.

• This method excludes events that are not in the active state (for example if they are removed by a moderator)

• This method excludes non-displayable events (reaction, replace, remove, purge)

• This method will not return events that were emitted and then deleted before this method was called

Parameters

• roomid: (required) Room id where you want previous events to be listed

• limit: (optional) default is 100, maximum 500

• cursor: (optional) If not provided, the most recent events will be returned. To get older events, call this method
again using the cursor string returned from the previous call.

Request Model: ChatRequest.ListPreviousEvents

public class ListPreviousEvents {
public var roomid: String?
public var cursor: String?
public var limit: Int? = 100

}

Response Model: ListEventsResponse

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?

(continues on next page)

52 Chapter 14. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var events: [Event]
}

14.13 List Event By Type

func listEventByType(_ request: ChatRequest.ListEventByType, completionHandler:␣
→˓@escaping Completion<ListEventsResponse>)

• This method enables you to retrieve a small list of recent events by type. This is useful for things like fetching a
list of recent announcements or custom event types without the need to scroll through the entire chat history.

• This method returns a list of events sorted from newest to oldest.

• This method returns only active events.

Parameters

• roomid: (required) Room id where you want previous events to be listed

• limit: (optional) default is 10, maximum 100

• cursor: (optional) If not provided, the most recent events will be returned. To get older events, call this method
again using the cursor string returned from the previous call.

• eventtype: (required) Specify the chat event type you are filtering for. If you want to filter for a custom event
type, specify ‘custom’ and then provide a value for the *customtype parameter

• customtype: (optional) If you want to filter by custom type you must first specify ‘custom’ for the eventtype field.
This will enable you to filter to find events of a custom type

Request Model: ChatRequest.ListEventByType

public class ListPreviousEvents {
public var roomid: String?
public var eventtype: EventType?
public var cursor: String?
public var limit: Int? = 10

}

Response Model: ListEventsResponse

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var events: [Event]

}

14.13. List Event By Type 53

Sportstalk SDK -iOS

14.14 List Event By Timestamp

func listEventByTimestamp(_ request: ChatRequest.ListEventByTimestamp,completionHandler:␣
→˓@escaping Completion<ListEventsResponse>)

• This method enables you to retrieve an event using a timestamp.

• You can optionally retrieve a small number of displayable events before and after the message at the requested
timestamp.

• This method returns a list of events sorted from oldest to newest.

• This method returns only active events.

• The timestamp is a high resolution timestamp accurate to the thousanth of a second. It is possible, but very
unlikely, for two messages to have the same timestamp.

• The method returns “timestampolder”. This can be passed as the timestamp value when calling functions like
this which accept a timestamp to retrieve data.

• The method returns “timestampnewer”. This can be passed as the timestamp value when calling this function
again.

• The method returns “cursorpolder”. This can be passed as the cursor to ethods that accept an events-sorted-by-
time cursor.

• The method returns “cursornewer”. This can be passed as the cursor to methods that accept an events-sorted-by-
time cursor.

Limitation

If you pass in 0 for limitolder you won’t get any older events than your timestamp and hasmoreolder will always be
false because the API will not query for older events. If you pass in 0 for limitnewer you won’t get any newer events
than your timestamp and hasmorenewer will always be false because the API will not query for newer events

Parameters

• roomid: (required) Room id where you want previous events to be listed

• ts: (required) If not provided, the most recent events will be returned. To get older events, call this method again
using the cursor string returned from the previous call

• limitolder: (optional) Defaults to 0, maximum 100.

• limitnewer : (optional) Defaults to 0, maximum 100

Request Model: ChatRequest.ListEventByType

public class ListPreviousEvents {
public var roomid: String?
public var timestamp: Int?
public var limitolder: Int? = 0
public var limitnewer: Int? = 0

}

Response Model: ListEventByTimestampResponse

public struct ListEventByTimestampResponse: Codable {
public var kind: String?
public var cursorolder: String?
public var cursornewer: String?

(continues on next page)

54 Chapter 14. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var timestampolder: Int?
public var timestampnewer: Int?
public var hasmoreolder: Bool?
public var hasmorenewer: Bool?
public var itemcount: Int64?
public var events: [Event]

}

14.15 Join Room

func joinRoom(_ request: ChatRequest.JoinRoom, completionHandler: @escaping Completion
→˓<JoinChatRoomResponse>)

Join A Room

You want your chat experience to open fast. The steps to opening a chat experience are:

• Create Room

• Create User

• Join Room (user gets permission to access events data from the room)

• Get Recent Events to display in your app

• If you have already created the room (step 1) then you can perform steps 2 - 4 using join room

DATA PARAMETERS

Provide a unique user ID string and chat handle string. If this is the first time the user ID has been used a new user
record will be created for the user. Whenever the user creates an event in the room by doing an action like saying
something, the user information will be returned.

You can optionally also provide a URL to an image and a URL to a profile.

If you provide user information and the user already exists in the database, the user will be updated with the new
information.

The user will be added to the list of participants in the room and the room participant count will increase.

The user will be removed from the room automatically after some time if the user doesn’t perform any operations.

Users can only execute commands in the room if they have joined the room.

When a logged in user joins a room an entrance event is generated in the room.

When a logged in user leaves a room, an exit event is generated in the room

Creating A New User: You have the option to create or update an existing user during join.

Parameters

• limit: (optional) Defaults to 50. This limits the number of previous messages returned when joining the room.

• userid: (required) If the userid is new then the user will be created. If the userid is already in use in the database
then the user will be updated.

• handle: (Optional) A unique string representing the user that is easy for other users to type.

– Example @GeorgeWashington could be the handle but Display Name could be “Wooden Teef For The
Win”.

14.15. Join Room 55

Sportstalk SDK -iOS

– If you are creating a user and you don’t specify a handle, the system will generate one for you (using Display
Name as basis if you provide that).

– If you request a handle and it’s already in use a new handle will be generated for you by adding a number
from 1-99 and returned.

– If the handle can’t be generated because all the options 1-99 on the end of it are taken then the request will
be rejected with BadRequest status code.

– Only these characters may be used: “abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU-
VWXYZ1234567890_”

• displayname: (optional) This is the desired name to display, typically the real name of the person.

• pictureurl: (optional) The URL to the picture for this user.

• profileurl: (optional) The profileurl for this user.

Warning This method requires authentication

Request Model: ChatRequest.JoinRoom

public class JoinRoom {
public var roomid: String?
public var userid: String?
public var handle: String?
public var displayname: String?
public var pictureurl: URL?
public var profileurl: URL?
public var limit: Int? = 50

}

Response Model: JoinChatRoomResponse

public struct JoinChatRoomResponse: Codable {
public var kind: String?
public var user: User?
public var room: ChatRoom?
public var eventscursor: GetUpdatesResponse?

}

14.16 Join Room by CustomId

func joinRoomByCustomId(_ request: ChatRequest.JoinRoomByCustomId, completionHandler:␣
→˓@escaping Completion<JoinChatRoomResponse>)

Join A Room By Custom ID

This method is the same as Join Room, except you can use your customid

The benefit of this method is you don’t need to query to get the roomid using customid, and then make another call to
join the room. This eliminates a request and enables you to bring your chat experience to your user faster.

You want your chat experience to open fast. The steps to opening a chat experience are:

1. Create Room

2. Create User

56 Chapter 14. Chat Client

Sportstalk SDK -iOS

3. Join Room (user gets permission to access events data from the room)

4. Get Recent Events to display in your app

If you have already created the room (step 1) then you can perform steps 2 - 4 using join room.

When you attempt to join the room, if the userid you provide does not exist then a user will be created for you auto-
matically.

If you provide a Display Name and you do not provide a handle then the display name will automatically be used
to generate a handle for you. If you do not provide a display name or a handle then a 16 character handle will be
automatically generated for you.

DATA PARAMETERS

Provide a unique user ID string and chat handle string. If this is the first time the user ID has been used a new user
record will be created for the user. Whenever the user creates an event in the room by doing an action like saying
something, the user information will be returned.

You can optionally also provide a URL to an image and a URL to a profile.

If you provide user information and the user already exists in the database, the user will be updated with the new
information.

The user will be added to the list of participants in the room and the room participant count will increase.

The user will be removed from the room automatically after some time if the user doesn’t perform any operations.

Users can only execute commands in the room if they have joined the room.

When a logged in user joins a room an entrance event is generated in the room.

When a logged in user leaves a room, an exit event is generated in the room.

Creating A New User: You have the option to create or update an existing user during join.

Parameters

• limit: (optional) Defaults to 50. This limits the number of previous messages returned when joining the room.

• userid: (required). If the userid is new then the user will be created. If the userid is already in use in the database
then the user will be updated.

• handle: (Optional) A unique string representing the user that is easy for other users to type.

– Example @GeorgeWashington could be the handle but Display Name could be “Wooden Teef For The
Win”.

– If you are creating a user and you don’t specify a handle, the system will generate one for you (using Display
Name as basis if you provide that).

– If you request a handle and it’s already in use a new handle will be generated for you by adding a number
from 1-99 and returned.

– If the handle can’t be generated because all the options 1-99 on the end of it are taken then the request will
be rejected with BadRequest status code.

– Only these characters may be used: “abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU-
VWXYZ1234567890_”

• displayname: (optional) This is the desired name to display, typically the real name of the person.

• pictureurl: (optional) The URL to the picture for this user.

• profileurl: (optional) The profileurl for this user.

14.16. Join Room by CustomId 57

Sportstalk SDK -iOS

Warning This method requires authentication

Request Model: ChatRequest.JoinRoomByCustomId

public class JoinRoomByCustomId {
public var customid: String?
public var userid: String?
public var handle: String?
public var displayname: String?
public var pictureurl: URL?
public var profileurl: URL?
public var limit: Int? = 50

}

Response Model: JoinChatRoomResponse

public struct JoinChatRoomResponse: Codable {
public var kind: String?
public var user: User?
public var room: ChatRoom?
public var eventscursor: GetUpdatesResponse?

}

14.17 Exit Room

func exitRoom(_ request: ChatRequest.ExitRoom, completionHandler: @escaping Completion
→˓<ExitChatRoomResponse>)

Exit a Room

This method should be called to remove a user from a room. This will cause an EXIT event to be broadcast in the room
and this user will no longer show up in the list of attendees in the room.

Parameters

• roomid: (required) Room id that you want to exit

• userid: (required) user id specific to App

Warning This method requires authentication

Request Model: ChatRequest.ExitRoom

public class ExitRoom {
public var roomid: String?
public var userid: String?

}

Response Model: ExitChatRoomResponse

public struct ExitChatRoomResponse: Codable {
public var kind: String?

}

58 Chapter 14. Chat Client

Sportstalk SDK -iOS

14.18 Get Updates

func getUpdates(_ request: ChatRequest.GetUpdates, completionHandler: @escaping␣
→˓Completion<GetUpdatesResponse>)

Get the Recent Updates to a Room

You can use this function to poll the room to get the recent events in the room. The recommended poll interval is 500ms.
Each event has an ID and a timestamp. To detect new messages using polling, call this function and then process items
with a newer timestamp than the most recent one you have already processed.

Each event in the stream has a KIND property. Inspect the property to determine if it is a;

• enter event: A user has joined the room.

• exit event: A user has exited chat.

• message: A user has communicated a message.

• reply: A user sent a message in response to another user.

• reaction: A user has reacted to a message posted by another user.

• action: A user is performing an ACTION (emote) alone or with another user.

Enter and Exit Events

Enter and Exit events may not be sent if the room is expected to have a very large number of users.

Parameters

• roomid: (required) Room id that you want to update

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) Number of events to return. Default is 100, maximum is 500

Warning This method requires authentication

Request Model: ChatRequest.GetUpdates

public class GetUpdates {
public var roomid: String?
public var cursor: String?
public var limit: Int = 100

}

Response Model: GetUpdatesResponse

public struct GetUpdatesResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var room: ChatRoom?
public var events: [Event]

}

14.18. Get Updates 59

Sportstalk SDK -iOS

14.19 Get More Updates

func getMoreUpdates(_ request: ChatRequest.GetMoreUpdates, completionHandler: @escaping␣
→˓Completion<GetUpdatesResponse>)

Get the Recent Updates to a Room

You can use this function to poll the room to get the recent events in the room. The recommended poll interval is 500ms.
Each event has an ID and a timestamp. To detect new messages using polling, call this function and then process items
with a newer timestamp than the most recent one you have already processed.

Each event in the stream has a KIND property. Inspect the property to determine if it is a;

• enter event: A user has joined the room.

• exit event: A user has exited chat.

• message: A user has communicated a message.

• reply: A user sent a message in response to another user.

• reaction: A user has reacted to a message posted by another user.

• action: A user is performing an ACTION (emote) alone or with another user.

Enter and Exit Events

Enter and Exit events may not be sent if the room is expected to have a very large number of users.

Parameters

• roomid: (required) Room id that you want to update

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) Number of events to return. Default is 100, maximum is 500

Warning This method requires authentication

Request Model: ChatRequest.GetUpdates

public class GetMoreUpdates {
public var roomid: String?
public var cursor: String?
public var limit: Int = 100

}

Response Model: GetUpdatesResponse

public struct GetUpdatesResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var room: ChatRoom?
public var events: [Event]

}

60 Chapter 14. Chat Client

Sportstalk SDK -iOS

14.20 Execute Command

func executeChatCommand(_ request: ChatRequest.ExecuteChatCommand, completionHandler:␣
→˓@escaping Completion<ExecuteChatCommandResponse>) throws

Executes a command in a chat room

Precondition The user must JOIN the room first with a call to Join Room. Otherwise you’ll receive HTTP Status Code
PreconditionFailed (412)

API UPDATES

• replyto: This is deprecated. For replies use Quoted Reply or Threaded Reply. For most use cases, Quoted Reply
is the recommended approach.

SENDING A MESSAGE

• Send any text that doesn’t start with a reserved symbol to perform a SAY command.

• Use this API call to REPLY to existing messages

• Use this API call to perform ACTION commands

• Use this API call to perform ADMIN commands

example These commands both do the same thing, which is send the message “Hello World” to the room. SAY Hello,
World

ACTION COMMANDS

• Action commands start with the / character

example

/dance nicole User sees: You dance with Nicole Nicole sees: (user’s handle) dances with you Everyone else sees:
(user’s handle) dances with Nicole

This requires that the action command dance is on the approved list of commands and Nicole is the handle of a partic-
ipant in the room, and that actions are allowed in the room.

ADMIN COMMANDS

• These commands start with the * character

example - ban : This bans the user from the entire chat experience (all rooms).

• restore : This restores the user to the chat experience (all rooms).

• purge : This deletes all messages from the specified user.

• deleteallevents : This deletes all messages in this room.

Parameters

• command: (required) The command to execute. See examples above.

• userid: (required) The userid of user who is executing the command. The user must have joined the room first.

• eventtype: (optional, default = speech) By default, the API will determine the type of event by processing your
command. However you can send custom commands.

• custom : This indicates you will be using a custom event type.

• announcement : This indicates the event is of type announcement.

• ad : Use this event type to push an advertisement. Use the CustomPayload property to specify parameters for
your add.

14.20. Execute Command 61

Sportstalk SDK -iOS

• customtype: (optional) A string having meaning to your app that represents a custom type of event defined by
you. You must specify “custom” as the eventtype to use this. If you don’t, the event type will be forced to custom
anyway.

• custompayload: (optional) A string (XML or JSON usually) representing custom data for your application to
use.

• replyto: (optional) Use this field to provide the EventID of an event you want to reply to. Replies have a different
event type and contain a copy of the original event.

• moderation: (optional) Use this field to override the moderation state of the chat event. Use this when you have
already inspected the content. Use one of the values below.

• approved : The content has already been approved by a moderator and it should not be sent to the moderation
queue if users report it since the decision was already made to approve it.

• prescreened : The content was prescreened, but not approved. This means it can still be flagged for moderation
queue by the users. This state allows a data analyst to distinguish between content that was approved by a
moderator and content that went through a filtering process but wasn’t explicitly approved or rejected.

• rejected : The content has been rejected by a moderator and it should not be broadcast into the chat stream, but
it should be saved to the chat room history for future analysis or audit trail purposes.

RESPONSE CODES

200 | OK : Sweet, sweet success.

400 | BadRequest : Something is wrong with your request. View response message and errors list for details.

403 | Forbidden : The userid issuing the request is banned from chatting in this room (or is banned globally).

405 | MethodBlocked : The method was blocked because it contained profanity and filtermode was set to ‘block’.

409 | Conflict : The customid of your event is already in use.

412 | PreconditionFailed : User must JOIN the room before executing a chat command.

Request Model: ChatRequest.ExecuteChatCommand

public class ExecuteChatCommand {
public var roomid: String?
public var command: String?
public var userid: String?
public var moderation: String?
public var eventtype: EventType?
public var customtype: String?
public var customid: String?
public var custompayload: String?

}

Response Model: ExecuteChatCommandResponse

public struct ExecuteChatCommandResponse: Codable {
public var kind: String?
public var op: String?
public var room: ChatRoom?
public var speech: Event?
public var action: Event?

}

62 Chapter 14. Chat Client

Sportstalk SDK -iOS

14.21 Send Quoted Reply

func sendQuotedReply(_ request: ChatRequest.SendQuotedReply, completionHandler:␣
→˓@escaping Completion<Event>) throws

Quotes an existing message and republishes it with a new message

This method is provided to support a chat experience where a person wants to reply to another person, and the reply
is inline with the rest of chat, but contains a copy of all or part of the original message you are replying to. You can
see this behavior in WhatsApp and iMessage. This way, when viewing the reply, the user doesn’t need to scroll up
searching conversation history for the context (the parent the reply is addresssing).

Parameters

• eventid: (required) The ID of the event you are quoting

• userid: (required) The userid of the user who is publishing the quoted reply.

• body: (required) The contents of the reply for the quoted reply. Cannot be empty.

• customid: (optional) Assigns a custom ID to the quoted reply event.

• custompayload: (optional) Attach a custom payload string to the quoted reply such as JSON or XML.

• customfield1: (optional) Use this field however you wish.

• customfield2: (optional) Use this field however you wish.

• customtags: (optional) An array of strings, use this field however you wish.

Request Model: ChatRequest.SendQuotedReply

public class SendQuotedReply {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var body: String?
public var customid: String?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?

(continues on next page)

14.21. Send Quoted Reply 63

Sportstalk SDK -iOS

(continued from previous page)

public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

14.22 Send Threaded Reply

func sendThreadedReply(_ request: ChatRequest.SendThreadedReply, completionHandler:␣
→˓@escaping Completion<Event>) throws

Creates a threaded reply to another message event

The purpose of this method is to enable support of a sub-chat within the chat room. You can use it to split off the con-
versation into a nested conversation. You can build a tree structure of chat messages and replies, but it is recommended
not to build experiences deeper than parent and child conversation level or it becomes complex for the users to follow.

Replies do not support admin or action commands

Parameters

• eventid: (required) The ID of the event you are quoting

• userid: (required) The userid of the user who is publishing the quoted reply.

• body: (required) The contents of the reply for the quoted reply. Cannot be empty.

• customid: (optional) Assigns a custom ID to the quoted reply event.

• custompayload: (optional) Attach a custom payload string to the quoted reply such as JSON or XML.

• customfield1: (optional) Use this field however you wish.

• customfield2: (optional) Use this field however you wish.

• customtags: (optional) An array of strings, use this field however you wish.

Request Model: ChatRequest.SendThreadedReply

64 Chapter 14. Chat Client

Sportstalk SDK -iOS

public class SendThreadedReply {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var body: String?
public var customid: String?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

14.22. Send Threaded Reply 65

Sportstalk SDK -iOS

14.23 List Messages By User

func listMessagesByUser(_ request: ChatRequest.ListMessagesByUser, completionHandler:␣
→˓@escaping Completion<ListMessagesByUser>)

Gets a list of users messages

The purpose of this method is to get a list of messages or comments by a user, with count of replies and reaction data.
This way, you can easily make a screen in your application that shows the user a list of their comment contributions
and how people reacted to it.

Parameters

• roomid: (required) Room id, in which you want to fetch messages

• userid: (required) user id, against which you want to fetch messages

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) default 200

Warning This method requires authentication

Request Model: ChatRequest.ListMessagesByUser

public class ListMessagesByUser {
public var cursor: String?
public var limit: Int? = 200
public var userId: String?
public var roomid: String?

}

Response Model: ListMessagesByUser

public struct ListMessagesByUser: Codable {
public var kind: String?
public var cursor: String?
public var events: [Event]

}

14.24 Purge Message

func purgeMessage(_ request: ChatRequest.PurgeUserMessages, completionHandler: @escaping␣
→˓Completion<ExecuteChatCommandResponse>)

Executes a command in a chat room to purge all messages for a user

This does not DELETE the message. It flags the message as moderator removed.

Parameters

• roomid: (required)

• userid: (required) the id of the owner of the messages

• handle: (required) the handle of the owner of the messages

66 Chapter 14. Chat Client

Sportstalk SDK -iOS

• password: (required) a valid admin password

Warning This method requires authentication

Request Model: ChatRequest.PurgeUserMessages

public class PurgeUserMessages {
public var roomid: String?
public var userid: String?
public var handle: String?
public var password: String?
private var command: String!

}

Response Model: ExecuteChatCommandResponse

public struct ExecuteChatCommandResponse: Codable {
public var kind: String?
public var op: String?
public var room: ChatRoom?
public var speech: Event?
public var action: Event?

}

14.25 Flag Event As Locally Deleted

func flagEventLogicallyDeleted(_ request: ChatRequest.FlagEventLogicallyDeleted,␣
→˓completionHandler: @escaping Completion<DeleteEventResponse>)

Set Deleted (LOGICAL DELETE)

Everything in a chat room is an event. Each event has a type. Events of type “speech, reply, quote” are considered
“messages”.

Use logical delete if you want to flag something as deleted without actually deleting the message so you still have the
data. When you use this method:

• The message is not actually deleted. The comment is flagged as deleted, and can no longer be read, but replies
are not deleted.

• If flag “permanentifnoreplies” is true, then it will be a permanent delete instead of logical delete for this comment
if it has no children.

• If you use “permanentifnoreplies” = true, and this comment has a parent that has been logically deleted, and this
is the only child, then the parent will also be permanently deleted (and so on up the hierarchy of events).

Parameters

• roomid: (required) The ID of the room containing the event

• eventid: (required) The unique ID of the chat event to delete. The user posting the delete request must be the
owner of the event or have moderator permission

• userid: (required) This is the application specific user ID of the user deleting the comment. Must be the owner
of the message event or authorized moderator.

• deleted: (required) Set to true or false to flag the comment as deleted. If a comment is deleted, then it will have
the deleted field set to true, in which case the contents of the event message should not be shown and the body

14.25. Flag Event As Locally Deleted 67

Sportstalk SDK -iOS

of the message will not be returned by the API by default. If a previously deleted message is undeleted, the flag
for deleted is set to false and the original comment body is returned

• permanentifnoreplies: (optional) If this optional parameter is set to “true”, then if this event has no replies it will
be permanently deleted instead of logically deleted. If a permanent delete is performed, the result will include
the field “permanentdelete=true”

If you want to mark a comment as deleted, and replies are still visible, use “true” for the logical delete value. If you
want to permanently delete the message and all of its replies, pass false

Request Model: ChatRequest.FlagEventLogicallyDeleted

public class FlagEventLogicallyDeleted {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var deleted: Bool?
public var permanentifnoreplies: Bool?

}

Response Model: ListMessagesByUser

public struct ListMessagesByUser: Codable {
public var kind: String?
public var cursor: String?
public var events: [Event]

}

14.26 Permanently Delete Event

func permanentlyDeleteEvent(_ request: ChatRequest.PermanentlyDeleteEvent,␣
→˓completionHandler: @escaping Completion<DeleteEventResponse>)

Deletes an event from the room.

This does not DELETE the message. It flags the message as moderator removed.

Parameters

• roomid: (required) the room id in which you want to remove the message

• eventId: (required) the message you want to remove.

• userid: (optional) If provided, a check will be made to enforce this userid (the one deleting the event) is the
owner of the event or has elevated permissions. If null, it assumes your business service made the determination
to delete the event. If it is not provided this authorization check is bypassed.

Warning This method requires authentication

Request Model: ChatRequest.PermanentlyDeleteEvent

public class PermanentlyDeleteEvent {
public var roomid: String?
public var eventid: String?
public var userid: String?

}

68 Chapter 14. Chat Client

Sportstalk SDK -iOS

Response Model: DeleteEventResponse

public struct DeleteEventResponse: Codable {
public var kind: String?
public var permanentdelete: Bool?
public var event: Event?

}

14.27 Delete All Events

func deleteAllEvents(_ request: ChatRequest.DeleteAllEvents, completionHandler:␣
→˓@escaping Completion<ExecuteChatCommandResponse>)

Deletes all the events in a room.

Parameters

• roomid: (required)

• userid: (required) the id of the owner of the messages

• password: (required) a valid admin password

Request Model: ChatRequest.DeleteAllEvents

public class DeleteAllEvents {
public var roomid: String?
private var command: String?
public var password: String?
public var userid: String?

}

Response Model: ExecuteChatCommandResponse

public struct ExecuteChatCommandResponse: Codable {
public var kind: String?
public var op: String?
public var room: ChatRoom?
public var speech: Event?
public var action: Event?

}

14.28 List Messages of User

func listMessagesByUser(_ request: ChatRequest.ListMessagesByUser, completionHandler:␣
→˓@escaping Completion<ListMessagesByUserResponse>)

Gets a list of users messages

The purpose of this method is to get a list of messages or comments by a user, with count of replies and reaction data.
This way, you can easily make a screen in your application that shows the user a list of their comment contributions
and how people reacted to it.

Parameters

14.27. Delete All Events 69

Sportstalk SDK -iOS

• roomid: (required) Room id, in which you want to fetch messages

• userid: (required) user id, against which you want to fetch messages

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) default 200

Warning This method requires authentication

Request Model: ChatRequest.ListMessagesByUser

public class ListMessagesByUser {
public var cursor: String?
public var limit: String? = defaultLimit
public var userId: String?
public var roomid: String?

}

Response Model: ListMessagesByUserResponse

public struct ListMessagesByUserResponse: Codable {
public var kind: String?
public var cursor: String?
public var events: [Event]

}

14.29 Report A Message

func reportMessage(_ request: ChatRequest.ReportMessage, completionHandler: @escaping␣
→˓Completion<Event>)

Reports a message to the moderation team

A reported message is temporarily removed from the chat event stream until it is evaluated by a moderator.

Parameters

• roomid: the id of the room in which you want to report the event

• eventid: the id of the event that you want to report.

• userid: (required) user id specific to app

• reporttype: (required) [defaults=”abuse”] e.g. abuse

Warning This method requires authentication.

Request Model: ChatRequest.ReportMessage

public class ReportMessage {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var reporttype = "abuse"

}

Response Model: Event

70 Chapter 14. Chat Client

Sportstalk SDK -iOS

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

14.30 React to an Event

func reactToEvent(_ request: ChatRequest.ReactToEvent, completionHandler: @escaping␣
→˓Completion<Event>)

Adds or removes a reaction to an existing event

After this completes, a new event appears in the stream representing the reaction. The new event will have an updated
version of the event in the replyto field, which you can use to update your UI.

Parameters

• userid: (required) user id specific to app

• roomid: (required) Room Id, in which you want to react

• eventid: (required) message id, that you want to report.

• reacted: (required) true/false

• reaction: (required) e.g. like

14.30. React to an Event 71

Sportstalk SDK -iOS

Warning This method requires authentication.

Request Model: ChatRequest.ReactToEvent

public class ReactToEvent {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var reaction: String?
public var reacted: String? = "false"

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

72 Chapter 14. Chat Client

Sportstalk SDK -iOS

14.31 Report User in Room

func reportUserInRoom(_ request: ChatRequest.ReportUserInRoom, completionHandler:␣
→˓@escaping Completion<ChatRoom>)

Reports a user in the room

• This API enables users to report other users who exhibit abusive behaviors. It enables users to silence another
user when a moderator is not present. If the user receives too many reports in a trailing 24 hour period, the user
will become flagged at the room level.

• This API moderates users on the ROOM LEVEL. If a There is an API method that enable reporting users at the
global user level which impacts all rooms. This API impacts only the experience for the specified userid within
the specified room.

• This API will return an error (see responses below) if user reporting is not enabled for your application in the
application settings by setting User Reports limit to a value > 0.

• A user who is flagged will have the shadowban effect applied.

Parameters

• roomid: (required) the id of the room in which you want to report the event

• userid: (required) the application specific user ID of the user reporting the first user

• reporttype: (required) [defaults=”abuse”] Possible values: [.abuse, .spam]. SPAM is unsolicited commercial
messages and abuse is hate speach or other unacceptable behavior.

RESPONSE CODES

200 | OK : Sweet, sweet success.

404 | Not Found : The specified user or application could not be found.

412 | PreconditionFailed : The request was rejected because user reporting is not enabled for the application.

Request Model: ChatRequest.ReportUserInRoom

public class ReportUserInRoom {
public var roomid: String?
public var userid: String?
public var reporttype: ReportType? = .abuse

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?

(continues on next page)

14.31. Report User in Room 73

Sportstalk SDK -iOS

(continued from previous page)

public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.32 Bounce User

func bounceUser(_ request: ChatRequest.BounceUser, completionHandler: @escaping␣
→˓Completion<BounceUserRequest>)

Remove the user from the room and prevent the user from reentering.

Optionally display a message to people in the room indicating this person was bounced.

When you bounce a user from the room, the user is removed from the room and blocked from reentering. Past events
generated by that user are not modified (past messages from the user are not removed)

Parameters

• userid: (required) user id specific to app

• bounce: (required) True if the user is being bounced from the room. False if user is debounced, allowing the
user to reenter the room.

• roomid: (required) The ID of the chat room from which to bounce this user

• announcement: (optional) If provided, this announcement is displayed to the people who are in the room, as the
body of a BOUNCE event.

Request Model: ChatRequest.BounceUser

public class BounceUser {
public var userid: String?
public var bounce: Bool?
public var roomid: String?
public var announcement: String?

}

Response Model: BounceUserResponse

public struct BounceUserResponse: Codable {
public var kind: String?
public var event: Event?

(continues on next page)

74 Chapter 14. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var room: ChatRoom?
}

14.33 Shadowban User

func shadowbanUser(_ request: ChatRequest.ShadowbanUser, completionHandler: @escaping␣
→˓Completion<ChatRoom>)

Shadow Ban User (In Room Only)

Will toggle the user’s shadow banned flag.

There is a user level shadow ban (global) and local room level shadow ban.

A Shadow Banned user can send messages into a chat room, however those messages are flagged as shadow banned.
This enables the application to show those messags only to the shadow banned user, so that that person may not know
they were shadow banned. This method shadow bans the user on the global level (or you can use this method to lift
the ban). You can optionally specify an expiration time. If the expiration time is specified, then each time the shadow
banned user tries to send a message the API will check if the shadow ban has expired and will lift the ban.

Parameters

• userid: (required) The applicaiton provided userid of the user to ban.

• applyeffect: (required) true or false. If true, user will be set to banned state. If false, will be set to non-banned
state.

• expireseconds: (optional) Duration of shadowban value in seconds. If specified, the shadow ban will be lifted
when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a
double byte value

Request Model: ChatRequest.ShadowbanUser

public class ShadowbanUser {
public var userid: String?
public var roomid: String?
public var applyeffect: Bool?
public var expireseconds: Double?

}

Response Model: ChatRoom

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?

(continues on next page)

14.33. Shadowban User 75

Sportstalk SDK -iOS

(continued from previous page)

public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.34 Mute User

func muteUser(_ request: ChatRequest.MuteUser, completionHandler: @escaping Completion
→˓<ChatRoom>)

Mute User (In Room Only)

Will toggle the user’s shadow banned flag.

There is a user level shadow ban (global) and local room level shadow ban.

A Shadow Banned user can send messages into a chat room, however those messages are flagged as shadow banned.
This enables the application to show those messags only to the shadow banned user, so that that person may not know
they were shadow banned. This method shadow bans the user on the global level (or you can use this method to lift
the ban). You can optionally specify an expiration time. If the expiration time is specified, then each time the shadow
banned user tries to send a message the API will check if the shadow ban has expired and will lift the ban.

Parameters

• userid: (required) The applicaiton provided userid of the user to ban.

• applyeffect: (required) true or false. If true, will have the mute affect applied. If false, mute will not be applied.

• expireseconds: (optional) Duration of shadowban value in seconds. If specified, the shadow ban will be lifted
when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a
double byte value

Request Model: ChatRequest.MuteUser

public class MuteUser {
public var userid: String?
public var roomid: String?
public var applyeffect: Bool?
public var expireseconds: Double?

}

Response Model: ChatRoom

76 Chapter 14. Chat Client

Sportstalk SDK -iOS

public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var enableautoexpiresessions: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?
public var bouncedusers: [String] = []
public var reportedusers: [ReportedUser] = []

}

14.35 Search Event History

func searchEventHistory(_ request: ChatRequest.SearchEvent, completionHandler: @escaping␣
→˓Completion<ListEventsResponse>)

Searches the message history applying the specified filters.

This returns displayable messages (for example speech, quote, threadedreply) that are in the active state (not flagged
by moderator or logically deleted).

Parameters

• fromuserid: (optional) Return ony events from the specified user

• fromhandle: (optional) Return only events from a user with the specified handle. Exact match, case insensitive.

• roomid: (optional) Return only events in the specified room.

• body: (optional) Returns only messages which contain the specified body substring.

• limit: (optional) Default is 50, maximum is 200. Limits how many items are returned.

• cursor: (optional) Leave blank to start from the beginning of the result set; provide the value from the previous
returned cursor to resume cursoring through the next page of results.

• direction: (optional) Defaults to Backward. Pass forward or backward. Backward is newest to oldest order,
forward is oldest to newest order.

• types: (optional) Default = all. Use this to filter for specific event types.

14.35. Search Event History 77

Sportstalk SDK -iOS

– speech

– quote

– reply

– announcement

– custom

– reaction

– action

– enter

– exit

– ad

– roomopened

– roomclosed

– purge

– remove

– replace

– bounce

Request Model: ChatRequest.SearchEvent

public class SearchEvent {
public var fromuserid: String?
public var fromhandle: String?
public var roomid: String?
public var body: String?
public var limit: Int? = 50
public var cursor: String?
public var direction: Ordering?
public var types: [EventType]?

}

Response Model: Event

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var events: [Event]

}

78 Chapter 14. Chat Client

Sportstalk SDK -iOS

14.36 Update Chat Event

func updateChatEvent(_ request: ChatRequest.UpdateChatEvent, completionHandler:␣
→˓@escaping Completion<Event>)

Updates the contents of an existing chat event

This API may be used to update the body of an existing Chat Event. It is used to enable the user to edit the message
after it is published. This may only be used with MESSAGE event types (speech, quote, reply). When the chat event is
updated another event of type “replace” will be emitted with the updated event contents, and the original event will be
replaced in future calls to List Event History, Join and List Previous Events. The event will also be flagged as edited
by user.

Parameters

• roomid: (required) The ID of the chat room conversation

• eventid: (required) The unique ID of the chat event to be edited. This must be a messsage type event (speech,
quote or reply).

• userid: (required) The application specific user ID updating the chat event. This must be the owner of the
comment or moderator / admin.

• body: (required) The new body contents of the event.

• customid: (optional) Optionally replace the customid.

• custompayload: (optional) Optionally replace the payload of the event.

• customfield1: (optional) Optionally replace the customfield1 value.

• customfield2: (optional) Optionally replace the customfield2 value.

• customtags: (optional) Optionaly replace the custom tags.

Request Model: ChatRequest.UpdateChatEvent

public class UpdateChatEvent {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var body: String?
public var customid: String?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?

(continues on next page)

14.36. Update Chat Event 79

Sportstalk SDK -iOS

(continued from previous page)

public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

14.37 Start Listening to Chat Updates

func startListeningToChatUpdates(config: ChatRequest.StartListeningToChatUpdates,␣
→˓completionHandler: @escaping Completion<[Event]>)

Periodically calls func getUpdates(request:completionHandler:) to receive latest chat events.

Parameters

• limit: (optional) Number of events to return. Default is 100, maximum is 500. Will use default if value set is
below default value.

• eventSpacingMs: (optional) The frequency (in milliseconds) when events are dispatched from buffer. Will use
default if value set is below default value.

Request Model: ChatRequest.StartListeningToChatUpdates

public class StartListeningToChatUpdates {
public var roomid: String // REQUIRED
public var limit: Int?
public var eventSpacingMs: Int

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?

(continues on next page)

80 Chapter 14. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

14.38 Stop Listening to Chat Updates

func stopListeningToChatUpdates(_ roomid: String)

Cancels listening to Chat Updates from a specific ChatRoom

Request Model: None

Response Model: None

14.38. Stop Listening to Chat Updates 81

Sportstalk SDK -iOS

14.39 Approve Event

func approveEvent(_ request: ModerationRequest.ApproveEvent, completionHandler:␣
→˓@escaping Completion<Event>)

Approves a message in the moderation queue

If PRE-MODERATION is enabled for a room, then all messages go to the queue before they can appear in the event
stream. For each incomming message, a webhook will be fired, if one is configured.

If the room is set to use POST-MODERATION, messages will only be sent to the moderation queue if they are reported.

Warning Requires Authentication

Request Model: ModerationRequest.ApproveEvent

public class ApproveEvent {
public var roomid: String?
public var eventid: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

82 Chapter 14. Chat Client

Sportstalk SDK -iOS

14.40 Reject Event

func rejectEvent(_ request: ModerationRequest.RejectEvent, completionHandler: @escaping␣
→˓Completion<Event>)

Rejects a message in the moderation queue

If PRE-MODERATION is enabled for a room, then all messages go to the queue before they can appear in the event
stream. For each incomming message, a webhook will be fired, if one is configured.

If the room is set to use POST-MODERATION, messages will only be sent to the moderation queue if they are reported.

Warning This method requires authentication

Request Model: ModerationRequest.RejectEvent

public class RejectEvent {
public var roomid: String?
public var eventid: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

14.40. Reject Event 83

Sportstalk SDK -iOS

14.41 List All Messages In Moderation Queue

func listMessagesInModerationQueue(_ request: ModerationRequest.
→˓listMessagesInModerationQueue, completionHandler: @escaping Completion
→˓<ListMessagesNeedingModerationResponse>)

List all the messages in the moderation queue

Parameters

• limit: (optional) Defaults to 200. This limits how many messages to return from the queue

• roomId: (optional) Provide the ID for a room to filter for only the queued events for a specific room

• cursor: (optional) Provide cursor value to get the next page of results.

Warning This method requires authentication

Request Model: ModerationRequest.listMessagesInModerationQueue

public class listMessagesInModerationQueue {
public var limit: Int? = 200
public var roomId: String?
public var cursor: String?

}

Response Model: ListMessagesNeedingModerationResponse

public struct ListMessagesNeedingModerationResponse: Codable {
public var kind: String?
public var events: [Event]

}

84 Chapter 14. Chat Client

CHAPTER

FIFTEEN

COMMENT CLIENT

15.1 Create or Update Conversation

func createOrUpdateConversation(_ request: CommentRequest.CreateUpdateConversation,␣
→˓completionHandler: @escaping Completion<Conversation>)

Creates a conversation (a context for comments)

Parameters

• conversationid : (optional) The conversation ID. This must be a URL friendly string (cannot contain / ? or other
URL delimiters). Maximum length is 250 characters.

• property : (required) The property this conversation is associated with. It is any string value you want. Typically
this is the domain of your website for which you want to use commenting, if you have more than one. Examples:
(“dev”, “uat”, “stage”, “prod”, “site1.com”, “site2.com”)

• moderation
[(required) Specify if pre or post moderation is to be used]

– pre - marks the room as Premoderated

– post - marks the room as Postmoderated

• maxreports : (optional, default = 3) If this number of users flags a content item in this conversation, the item is
disabled and sent to moderator queue for review

• enableprofanityfilter: (optional) [default=true / false] Enables profanity filtering.

• title : (optional) The title of the conversation

• maxcommentlen: (optional) The maximum allowed length of a comment. Default is 256 characters. Maximum
value is 10485760 (10 MB)

• open: (optional, defaults to true) If the conversation is open people can add comments.

• added: (optional) If this timestamp is provided then the whenadded field will be overridden. You
should only use this when migrating data; data is timestamped automatically. Example value: “2020-05-
02T08:51:53.8140055Z”

• whenmodified: (optional)

• customtype : (optional) Custom type string.

• customid: (optional) 250 characters for a custom ID for your app. This field is indexed for high performance
object retrieval.

• customtags : (optional) A comma delimited list of tags

85

Sportstalk SDK -iOS

• custompayload : (optional) Custom payload string.

• customfield1 : (optional) User custom field 1. Store any string value you want here, limit 1024 bytes.

• customfield2 : (optional) User custom field 2. Store any string value you want here, limit 1024 bytes.

Warning This method requires authentication

Request Model: CommentRequest.CreateUpdateConversation

public class CreateUpdateConversation: ParametersBase</*...*/> {
/// ...
public let conversationid: String?
public let property: String // REQUIRED
public let moderation: String // REQUIRED
public var maxreports: Int?
public var enableprofanityfilter: Bool?
public var title: String?
public var maxcommentlen: Int64?
public var open: Bool?
public var added: String? // OPTIONAL, Example value: "2020-05-02T08:51:53.

→˓8140055Z"
public var whenmodified: String? // OPTIONAL, Example value: "2020-05-

→˓02T08:51:53.8140055Z"
public var customtype: String?
public var customid: String?
public var customtags: [String]?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?
/// ...

}

Response Model: Conversation

open class Conversation: Codable {
public var kind: String? // "comment.conversation"
public var id: String?
public var appid: String?
public var owneruserid: String?
public var conversationid: String?
public var property: String? // "sportstalk247.com/apidemo"
public var moderation: String? /* "pre"/"post"/"na" */
public var maxreports: Int64? // OPTIONAL, defaults to 3
public var enableprofanityfilter: Bool? // OPTIONAL, defaults to true
public var title: String?
public var maxcommentlen: Int64?
public var commentcount: Int64?
public var reactions: [Reaction]?
public var likecount: Int64?
public var open: Bool? // OPTIONAL, defaults to true
public var added: Date? // OPTIONAL, Example value: "2020-05-02T08:51:53.

→˓8140055Z"
public var whenmodified: Date? // OPTIONAL, Example value: "2020-05-

→˓02T08:51:53.8140055Z"
public var customtype: String?

(continues on next page)

86 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

public var customid: String?
public var customtags: [String]?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.CreateUpdateConversation(

conversationid: "demo-test-conversation-1",
property: "sportstalk247.com/apidemo1",
moderation: "post"

)
request.enableprofanityfilter = false
request.title = "Sample Conversation 1"
request.open = true
request.customid = "test-custom-convo-id1"
// Other request optional fields

// Perform operation
commentClient.createOrUpdateConversation(request) { (code: Int?, message: String?, kind:␣
→˓String?, response: Conversation?) in
// ... Resolve `response` from here

}

15.2 Get Conversation by ID

func getConversation(_ request: CommentRequest.GetConversationById, completionHandler:␣
→˓@escaping Completion<Conversation>)

Retrieves metadata about a conversation.

Parameters

• conversationid : (required) The ID of the conversation which is a context for comments. The ID must be URL
ENCODED.

Warning This method requires authentication

Request Model: CommentRequest.GetConversationById

public class GetConversationById: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
/// ...

}

Response Model: Conversation

15.2. Get Conversation by ID 87

Sportstalk SDK -iOS

open class Conversation: Codable {
public var kind: String? // "comment.conversation"
public var id: String?
public var appid: String?
public var owneruserid: String?
public var conversationid: String?
public var property: String? // "sportstalk247.com/apidemo"
public var moderation: String? /* "pre"/"post"/"na" */
public var maxreports: Int64? // OPTIONAL, defaults to 3
public var enableprofanityfilter: Bool? // OPTIONAL, defaults to true
public var title: String?
public var maxcommentlen: Int64?
public var commentcount: Int64?
public var reactions: [Reaction]?
public var likecount: Int64?
public var open: Bool? // OPTIONAL, defaults to true
public var added: Date? // OPTIONAL, Example value: "2020-05-02T08:51:53.

→˓8140055Z"
public var whenmodified: Date? // OPTIONAL, Example value: "2020-05-

→˓02T08:51:53.8140055Z"
public var customtype: String?
public var customid: String?
public var customtags: [String]?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.GetConversationById(conversationid: "conversation-id-1")

// Perform operation
commentClient.getConversation(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Conversation?) in
// ... Resolve `response` from here

}

15.3 Find Conversation by CustomID

func getConversationByCustomId(_ request: CommentRequest.FindConversationByIdCustomId,␣
→˓completionHandler: @escaping Completion<Conversation>)

Uses the CustomID for the conversation supplied by the app to retrieve the conversation object. It returns exactly one
object or 404 if not found. This query is covered by an index and is performant.

Parameters

• customid : (Required) Locates a conversation using the custom ID.

88 Chapter 15. Comment Client

Sportstalk SDK -iOS

Warning This method requires authentication

Request Model: CommentRequest.FindConversationByIdCustomId

public class FindConversationByIdCustomId: ParametersBase</*...*/> {
/// ...
public let customid: String // REQUIRED
/// ...

}

Response Model: Conversation

open class Conversation: Codable {
public var kind: String? // "comment.conversation"
public var id: String?
public var appid: String?
public var owneruserid: String?
public var conversationid: String?
public var property: String? // "sportstalk247.com/apidemo"
public var moderation: String? /* "pre"/"post"/"na" */
public var maxreports: Int64? // OPTIONAL, defaults to 3
public var enableprofanityfilter: Bool? // OPTIONAL, defaults to true
public var title: String?
public var maxcommentlen: Int64?
public var commentcount: Int64?
public var reactions: [Reaction]?
public var likecount: Int64?
public var open: Bool? // OPTIONAL, defaults to true
public var added: Date? // OPTIONAL, Example value: "2020-05-02T08:51:53.

→˓8140055Z"
public var whenmodified: Date? // OPTIONAL, Example value: "2020-05-

→˓02T08:51:53.8140055Z"
public var customtype: String?
public var customid: String?
public var customtags: [String]?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.FindConversationByIdCustomId(customid: "custom-conversation-
→˓id1")

// Perform operation
commentClient.getConversationByCustomId(request) { (code: Int?, message: String?, kind:␣
→˓String?, response: Conversation?) in
// ... Resolve `response` from here

}

15.3. Find Conversation by CustomID 89

Sportstalk SDK -iOS

15.4 List Conversations

func listConversations(_ request: CommentRequest.ListConversations, completionHandler:␣
→˓@escaping Completion<ListConversationsResponse>)

Retrieves metadata about all conversations for a property. Whenever you create a conversation, you provide a property
to associate it with. This returns the metadata for all conversations associated with a property.

ABOUT CURSORING:

• API Method returns a cursor

• Cursor includes a “more” field indicating if there are more results that can be read at the time this call is made

• Cursor includes “cursor” field, which can be passed into subsequent calls to this method to get additional results

• Cursor includes “itemcount” field, which is the number of items returned by the cursor not the total number of
items in the database

• All LIST methods in the API return cursors and they all work the same way

Parameters

• propertyid : Filters list of conversations by property. Exact match only, case sensitive.

• cursor : (Optional, default = “”). For cusoring, pass in cursor output from previous call to continue where you
left off.

• limit : (Optional, default = 200). For cursoring, limit the number of responses for this request.

• sort
[(Optional, default = “oldest”).]

– newest : Default. Sorts from newest created conversation to the oldest.

– oldest : Starts from oldest conversation and cursors towards the newest.

Warning This method requires authentication

Request Model: CommentRequest.ListConversations

public class ListConversations: ParametersBase</*...*/> {
/// ...
public var propertyid: String?
public var cursor: String?
public var limit: Int?
public var sort: SortType?
/// ...

}

Response Model: ListConversationsResponse

open class ListConversationsResponse: Codable {
public var kind: String? /* "list.commentconversations" */
public var cursor: String?
public var more: Bool?
public var conversations: [Conversation] = []

/// ...
}

90 Chapter 15. Comment Client

Sportstalk SDK -iOS

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.ListConversations()
// You may provide optional parameters as shown below:
// request.propertyid = "sportstalk247.com/apidemo"
// request.cursor = "63bd442ccfce070c7825639a"
// request.limit = 10
// request.sort = SortType.newest

// Perform operation
commentClient.listConversations(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: ListConversationsResponse?) in
// ... Resolve `response` from here

}

15.5 Batch Get Conversation Details

func batchGetConversationDetails(_ request: CommentRequest.GetBatchConversationDetails,␣
→˓completionHandler: @escaping Completion<BatchGetConversationDetailsResponse>)

The purpose of this method is to support a use case where you start with a list of conversations and you want metadata
about only those conversations so you can display things like like count or comment count making minimal requests.
You can choose to either retrieve articles using the sportstalk ID or by using your custom IDs you associated with the
conversation using our create/update conversation API.

Parameters

• ids : (optional): Include one or more comma delimited Sportstalk conversation IDs.

• cid : (optional): Include one or more cid arguments. Each is a URL ENCODED string containing the customid.
You can specify up to 200 at a time.

• entities (optional): By default only the conversation object data is returned. For more data (and deeper
queries) provide any of these entities:

– reactions: Includes user reactions and microprofiles in the response

– likecount: Includes number of likes on the conversation in the response, otherwise returns -1 for like
count.

– commentcount: Includes the number of comments in the response, otherwise returns -1 for comment
count.

Warning This method requires authentication

Request Model: CommentRequest.GetBatchConversationDetails

public class GetBatchConversationDetails: ParametersBase</*...*/> {
/// ...
public var ids: [String]?
public var cid: [String]?
public var entities: [BatchGetConversationEntity]?
/// ...

}

Response Model: BatchGetConversationDetailsResponse

15.5. Batch Get Conversation Details 91

Sportstalk SDK -iOS

open class BatchGetConversationDetailsResponse: Codable {
public var kind: String? /* "list.comment.conversation.details" */
public var itemcount: Int64?
public var conversations: [Conversation] = []

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.GetBatchConversationDetails(

ids: [createdConversation1.conversationid!, createdConversation2.conversationid!]
)
//
// Optionally, if NOT `ids`, you may either provided customids under `cid` parameter
// let request = CommentRequest.GetBatchConversationDetails(
// cid: [createdConversation1.conversationid!, createdConversation2.
→˓conversationid!]
//)
//
// Lastly, you may also provide `entities` parameter to include more data

// Perform operation
commentClient.batchGetConversationDetails(request) { (code: Int?, message: String?,␣
→˓kind: String?, response: BatchGetConversationDetailsResponse?) in
// ... Resolve `response` from here

}

15.6 React to Conversation Topic

func reactToConversationTopic(_ request: CommentRequest.ReactToConversationTopic,␣
→˓completionHandler: @escaping Completion<Conversation>)

Adds or removes a reaction to a topic A conversation context is mapped to your topic by using either the conversationid
or the customid. You can either react to the content itself (for example to LIKE an article/video/poll) or you can use the
comment react api to react to an individual comment. This method is for commenting on the conversation topic level.

Parameters

• userid : (required) The ID of the user reacting to the comment. Anonymous reactions are not supported.

• reaction : (required) A string indicating the reaction you wish to capture, for example “like”, or “emoji:{id}”
where you can use the standard character code for your emoji.

• reacted : (required) true or false, to toggle the reaction on or off for this user.

Warning This method requires authentication

Request Model: CommentRequest.ReactToConversationTopic

public class ReactToConversationTopic: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED

(continues on next page)

92 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

public let userid: String // REQUIRED
public let reaction: String // REQUIRED
public let reacted: Bool // REQUIRED
/// ...

}

Response Model: Conversation

open class Conversation: Codable {
public var kind: String? // "comment.conversation"
public var id: String?
public var appid: String?
public var owneruserid: String?
public var conversationid: String?
public var property: String? // "sportstalk247.com/apidemo"
public var moderation: String? /* "pre"/"post"/"na" */
public var maxreports: Int64? // OPTIONAL, defaults to 3
public var enableprofanityfilter: Bool? // OPTIONAL, defaults to true
public var title: String?
public var maxcommentlen: Int64?
public var commentcount: Int64?
public var reactions: [Reaction]?
public var likecount: Int64?
public var open: Bool? // OPTIONAL, defaults to true
public var added: Date? // OPTIONAL, Example value: "2020-05-02T08:51:53.

→˓8140055Z"
public var whenmodified: Date? // OPTIONAL, Example value: "2020-05-

→˓02T08:51:53.8140055Z"
public var customtype: String?
public var customid: String?
public var customtags: [String]?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.ReactToConversationTopic(

conversationid: createdConversation.conversationid!,
userid: createdUser.userid!,
reaction: "like",
reacted: true

)

// Perform operation
commentClient.reactToConversationTopic(request) { (code: Int?, message: String?, kind:␣
→˓String?, response: Conversation?) in
// ... Resolve `response` from here

}

15.6. React to Conversation Topic 93

Sportstalk SDK -iOS

15.7 Create and Publish Comment

func createComment(_ request: CommentRequest.CreateComment, completionHandler: @escaping␣
→˓Completion<Comment>)

Creates a comment and publishes it You can optionally make this comment into a reply by passing in the optional
replyto field. Custom fields can be set, and can be overwritten. However, once a custom field is used it can not be set
to no value (empty string).

Parameters

• conversationid : (required) The ID of the comment stream to publish the comment to. See the Create / Update
Conversation method for rules around conversationid.

• userid : (required) The application’s userid representing the user who submitted the comment

• displayname : (optional). This is the desired name to display, typically the real name of the person.

• body : (required) The body of the comment (the message). Supports unicode characters including EMOJIs and
international characters.

• customtype : (optional) Custom type string.

• customfield1 : (optional) User custom field 1. Store any string value you want here, limit 1024 bytes.

• customfield2 : (optional) User custom field 2. Store any string value you want here, limit 1024 bytes.

• customtags : (optional) A comma delimited list of tags

• custompayload : (optional) Custom payload string.

Warning This method requires authentication

Request Model: CommentRequest.CreateComment

public class CreateComment: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let userid: String // REQUIRED
public var displayname: String?
public let body: String // REQUIRED
public var customtype: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: [String]?
public var custompayload: String?
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?
public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?

(continues on next page)

94 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?
public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?
public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.CreateComment(

conversationid: "demo-conversation-id",
userid: "yBommvwYYNBrxPwY",
body: "Sample Comment 1"

)
// Optionally, you may provide more parameters
// request.displayname = "MyAlterEgo1"
// request.customtype = "type1"
// request.customfield1 = "/sample/userdefined1/emojis/"
// request.customfield2 = "/sample/userdefined2/intl/characters/"
// request.customtags = ["taga", "tagb"]
// request.custompayload = "{ num: 0 }"

// Perform operation
commentClient.createComment(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Comment?) in
// ... Resolve `response` from here

}

15.7. Create and Publish Comment 95

Sportstalk SDK -iOS

15.8 Reply to Comment

func replyToComment(_ request: CommentRequest.ReplyToComment, completionHandler:␣
→˓@escaping Completion<Comment>)

Creates a reply to a comment and publishes it

The reply to comment method is the same as the create comment method, except you pass in the ID of the parent
comment using the replyto field. See WEBHOOKS SERVICE API for information on receiving a notification when
someone replies to a comment. See documentation on Create and Publish Comment

Parameters

• conversationid : (required) The ID of the comment conversation.

• replytocommentid : (required) The unique ID of the comment we will reply to.

• userid : (required) The application’s userid representing the user who submitted the comment

• displayname : (optional). This is the desired name to display, typically the real name of the person.

• body : (required) The body of the reply (what the user is saying). Supports unicode characters including EMOJIs
and international characters.

• customtype : (optional) Custom type string.

• customfield1 : (optional) User custom field 1. Store any string value you want here, limit 1024 bytes.

• customfield2 : (optional) User custom field 2. Store any string value you want here, limit 1024 bytes.

• customtags : (optional) A comma delimited list of tags

• custompayload : (optional) Custom payload string.

Warning This method requires authentication

Request Model: CommentRequest.ReplyToComment

public class ReplyToComment: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let replytocommentid: String // REQUIRED
public let userid: String // REQUIRED
public var displayname: String?
public let body: String // REQUIRED
public var customtype: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: [String]?
public var custompayload: String?
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?

(continues on next page)

96 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?
public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?
public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?
public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.ReplyToComment(

conversationid: "demo-conversation-id1",
replytocommentid: "root-comment-id1",
userid: "yBommvwYYNBrxPwY",
body: "Reply Comment"

)
// Optionally, you may provide more parameters
// request.displayname = "MyAlterEgo1"
// request.customtype = "type1"
// request.customfield1 = "/sample/userdefined1/emojis/"
// request.customfield2 = "/sample/userdefined2/intl/characters/"
// request.customtags = ["taga", "tagb"]
// request.custompayload = "{ num: 0 }"

// Perform operation
(continues on next page)

15.8. Reply to Comment 97

Sportstalk SDK -iOS

(continued from previous page)

commentClient.replyToComment(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Comment?) in
// ... Resolve `response` from here

}

15.9 List Replies

func listCommentReplies(_ request: CommentRequest.ListCommentReplies, completionHandler:␣
→˓@escaping Completion<ListCommentsResponse>)

Get a list of replies to a comment

This method works the same way as the List Comments method, so view the documentation on that method. The
difference is that this method will filter to only include comments that have a parent.

ABOUT CURSORING:

• API Method returns a cursor

• Cursor includes a “more” field indicating if there are more results that can be read at the time this call is made

• Cursor includes “cursor” field, which can be passed into subsequent calls to this method to get additional results

• Cursor includes “itemcount” field, which is the number of items returned by the cursor not the total number of
items in the database

• All LIST methods in the API return cursors and they all work the same way

Parameters

• conversationid : (required) The ID of the comment conversation.

• cursor : (optional) If provided, will get the next bundle of comments in the conversation resuming from where
the cursor left off.

• limit : (Optional, default = 200). For cursoring, limit the number of responses for this request.

• direction: (optional) Default is forward. Must be forward or backward

• sort
[(optional, defaults to “oldest”) Specifies that sort should be done by. . .]

– oldest : Sort by when added ascending (oldest on top)

– newest : Sort by when added ascending (newest on top)

– likes : Sort by number of likes, descending (most liked on top)

– votescore : Sort by net of adding upvotes and subtracting downvotes, descending

– mostreplies : Sort by number of replies,descending

• includechildren : (optional, default is false) If false, this returns all reply nodes that are immediate children of
the provided parent id. If true, it includes all replies under the parent id and all the children of those replies and
so on.

• includeinactive : (optional, default is false) If true, return comments that are inactive (for example, disabled by
moderation)

98 Chapter 15. Comment Client

Sportstalk SDK -iOS

Warning This method requires authentication

Request Model: CommentRequest.ListCommentReplies

public class ListCommentReplies: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
public var cursor: String?
public var limit: Int?
public var direction: Ordering?
public var sort: SortType?
public var includechildren: Bool?
public var includeinactive: Bool?
/// ...

}

Response Model: ListCommentsResponse

open class ListCommentsResponse: Codable {
public var kind: String? /* "list.comments" */
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var conversation: Conversation?
public var comments: [Comment] = []

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.ListCommentReplies(

conversationid: "demo-conversation-id1",
commentid: "root-comment-id1"

)
// You may provide optional parameters as shown below:
// request.propertyid = "sportstalk247.com/apidemo"
// request.cursor = "63bd442ccfce070c7825639a"
// request.limit = 10
// request.sort = SortType.newest

// Perform operation
commentClient.listCommentReplies(request) { (code: Int?, message: String?, kind: String?,
→˓ response: ListCommentsResponse?) in
// ... Resolve `response` from here

}

15.9. List Replies 99

Sportstalk SDK -iOS

15.10 Get Comment by ID

func getComment(_ request: CommentRequest.GetCommentDetails, completionHandler:␣
→˓@escaping Completion<Comment>)

The comment time stamp is stored in UTC time.

Parameters

• conversationid : (required) The ID of the comment conversation, URL ENCODED.

• commentid : (required) The unique ID of the comment, URL ENCODED.*

Warning This method requires authentication

Request Model: CommentRequest.GetCommentDetails

public class GetCommentDetails: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?
public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?
public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?
public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?

(continues on next page)

100 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.GetCommentDetails(

conversationid: "demo-conversation-id1",
commentid: "get-comment-id1"

)

// Perform operation
commentClient.getComment(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Comment?) in
// ... Resolve `response` from here

}

15.11 List Comments

func listComments(_ request: CommentRequest.ListComments, completionHandler: @escaping␣
→˓Completion<ListCommentsResponse>)

Get a list of comments within a conversation

ABOUT CURSORING:

• API Method returns a cursor

• Cursor includes a “more” field indicating if there are more results that can be read at the time this call is made

• Cursor includes “cursor” field, which can be passed into subsequent calls to this method to get additional results

• Cursor includes “itemcount” field, which is the number of items returned by the cursor not the total number of
items in the database

• All LIST methods in the API return cursors and they all work the same way

Parameters

• conversationid : (required) The ID of the comment conversation.

• cursor : (optional) If provided, will get the next bundle of comments in the conversation resuming from where
the cursor left off.

• limit : (Optional, default = 200). For cursoring, limit the number of responses for this request.

• direction: (optional) Default is forward. Must be forward or backward

• sort
[(optional, defaults to “oldest”) Specifies that sort should be done by. . .]

15.11. List Comments 101

Sportstalk SDK -iOS

– oldest : Sort by when added ascending (oldest on top)

– newest : Sort by when added ascending (newest on top)

– likes : Sort by number of likes, descending (most liked on top)

– votescore : Sort by net of adding upvotes and subtracting downvotes, descending

– mostreplies : Sort by number of replies,descending

• includechildren : (optional, default is false) If false, this returns all reply nodes that are immediate children of
the provided parent id. If true, it includes all replies under the parent id and all the children of those replies and
so on.

• includeinactive : (optional, default is false) If true, return comments that are inactive (for example, disabled by
moderation)

Warning This method requires authentication

Request Model: CommentRequest.ListComments

public class ListComments: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public var cursor: String?
public var limit: Int?
public var direction: Ordering?
public var sort: SortType?
public var includechildren: Bool?
public var includeinactive: Bool?
/// ...

}

Response Model: ListCommentsResponse

open class ListCommentsResponse: Codable {
public var kind: String? /* "list.comments" */
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var conversation: Conversation?
public var comments: [Comment] = []

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.ListComments(

conversationid: "demo-conversation-id1",
commentid: "root-comment-id1"

)
// You may provide optional parameters as shown below:
// request.propertyid = "sportstalk247.com/apidemo"
// request.cursor = "63bd442ccfce070c7825639a"
// request.limit = 10
// request.sort = SortType.newest

(continues on next page)

102 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

// Perform operation
commentClient.listComments(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: ListCommentsResponse?) in
// ... Resolve `response` from here

}

15.12 List Replies Batch

func listCommentRepliesBatch(_ request: CommentRequest.GetBatchCommentReplies,␣
→˓completionHandler: @escaping Completion<ListCommentRepliesBatchResponse>)

Get a list of replies to multiple parent Comments

The purpose of this method is to support a use case where you open an app or website widget and you have just displayed
up to N top level comments and you want to retrieve the replies to those comments quickly, in 1 request. You could call
GetReplies for each top level parent, but if you want to get them in just one request use this method, which has more
speed but some limitations:

• This method does not support cursoring.

• This method allows you to specify the maximum number of children to return per top level parent, but it does
not apply a limit across the total number of replies across all of the top level comments.

• This method will always return replies sorted by when originally published timestamp ascending (oldest to
newest), with replies grouped by each parent comment in the result set.

• This method will return the children that are direct immediate child replies to the parent only, not an entire tree
under a parent.

• If the parentid list contains a parentid that does not exist or has no child replies it will be skipped, you will not
receive 404 unless none of the parentids were found.

Parameters

• conversationid : (required) The ID of the comment conversation.

• childlimit : (Optional, default = 50).

• parentids : (Required). A list of parent comment ID(s), up to 30.

• includeinactive : (optional, default is false) If true, return comments that are inactive (for example, disabled by
moderation)

Warning This method requires authentication

Request Model: CommentRequest.GetBatchCommentReplies

public class GetBatchCommentReplies: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public var childlimit: Int?
public let parentids: [String] // REQUIRED
public var includeinactive: Bool?
/// ...

}

15.12. List Replies Batch 103

Sportstalk SDK -iOS

Response Model: ListCommentRepliesBatchResponse

open class ListCommentRepliesBatchResponse: Codable {
public var kind: String?
public var repliesgroupedbyparentid: [CommentReplyGroup]

/// ...

public struct CommentReplyGroup: Codable {
public var kind: String?
public var parentid: String?
public var comments: [Comment] = []

// ...
}

}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.GetBatchCommentReplies(

conversationid: "demo-conversation-id1",
parentids: ["root-comment-id1", "root-comment-id2", "root-comment-id3"]

)
// You may provide optional parameters as shown below:
// request.childlimit = 10
// request.includeinactive = true

// Perform operation
commentClient.listCommentRepliesBatch(request) { (code: Int?, message: String?, kind:␣
→˓String?, response: ListCommentRepliesBatchResponse?) in
// ... Resolve `response` from here

}

15.13 React to Comment(“Like”)

func reactToComment(_ request: CommentRequest.ReactToComment, completionHandler:␣
→˓@escaping Completion<Comment>)

Adds or removes a reaction to a comment

A reaction can be added using any reaction string that you wish.

Parameters

• conversationid : (required) The ID of the comment conversation.

• commentid : (required) The unique ID of the comment, URL ENCODED.*

• **userid : (required) The ID of the user reacting to the comment. Anonymous reactions are not supported.

• reaction : (required) A string indicating the reaction you wish to capture, for example “like”, or “emoji:{id}”
where you can use the standard character code for your emoji.

• reacted : (required) true or false, to toggle the reaction on or off for this user.

104 Chapter 15. Comment Client

Sportstalk SDK -iOS

Warning This method requires authentication

Request Model: CommentRequest.ReactToComment

public class ReactToComment: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
public let userid: String // REQUIRED
public let reaction: String // REQUIRED
public let reacted: Bool // REQUIRED
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?
public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?
public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?
public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?
public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

15.13. React to Comment(“Like”) 105

Sportstalk SDK -iOS

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.ReactToComment(

conversationid: "demo-conversation-id1",
commentid: "root-comment-id1",
userid: "yBommvwYYNBrxPwY",
reaction: "like",
reacted: true

)

// Perform operation
commentClient.reactToComment(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Comment?) in
// ... Resolve `response` from here

}

15.14 Vote on Comment

func voteOnComment(_ request: CommentRequest.VoteOnComment, completionHandler: @escaping␣
→˓Completion<Comment>)

UPVOTE, DOWNVOTE, or REMOVE VOTE

Parameters

• conversationid : (required) The ID of the comment conversation.

• commentid : (required) The unique ID of the comment, URL ENCODED.*

• vote : (required) Must be one of “up”, “down”, or “none” (empty value). If up, the comment receives an upvote.
If down, the comment receives a down vote. If empty, the vote is removed.

• userid : (required) The application specific user id performing the action.

Warning This method requires authentication

Request Model: CommentRequest.VoteOnComment

public class VoteOnComment: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
public let vote: VoteType // REQUIRED
public let userid: String // REQUIRED
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?

(continues on next page)

106 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?
public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?
public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?
public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.VoteOnComment(

conversationid: "demo-conversation-id1",
commentid: "root-comment-id1",
vote: VoteType.up,
userid: "yBommvwYYNBrxPwY"

)

// Perform operation
commentClient.voteOnComment(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Comment?) in
// ... Resolve `response` from here

}

15.14. Vote on Comment 107

Sportstalk SDK -iOS

15.15 Report Comment

func reportComment(_ request: CommentRequest.ReportComment, completionHandler: @escaping␣
→˓Completion<Comment>)

REPORTS a comment to the moderation team.

Parameters

• conversationid : (required) The ID of the comment conversation.

• commentid : (required) The unique ID of the comment, URL ENCODED.

• userid : (required) This is the application specific user ID of the user reporting the comment.

• reporttype : (required) A string indicating the reason you wish to report(i.e. “abuse”, “spam”).

Warning This method requires authentication

Request Model: CommentRequest.ReportComment

public class ReportComment: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
public let userid: String // REQUIRED
public let reporttype: ReportType // REQUIRED
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?
public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?
public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?

(continues on next page)

108 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?
public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.ReportComment(

conversationid: "demo-conversation-id1",
commentid: "root-comment-id1",
userid: "yBommvwYYNBrxPwY",
reporttype: ReportType.abuse

)

// Perform operation
commentClient.reportComment(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Comment?) in
// ... Resolve `response` from here

}

15.16 Update Comment

func updateComment(_ request: CommentRequest.UpdateComment, completionHandler: @escaping␣
→˓Completion<Comment>)

UPDATES the contents of an existing comment

Parameters

• conversationid : (required) The ID of the comment conversation.

• commentid : (required) The unique ID of the comment, URL ENCODED.

• userid : (required) The application specific user ID of the comment to be updated. This must be the owner of
the comment or moderator / admin.

• body : (required) The new body contents of the comment.

The comment will be flagged to indicate that it has been modified.

Warning This method requires authentication

Request Model: CommentRequest.UpdateComment

15.16. Update Comment 109

Sportstalk SDK -iOS

public class UpdateComment: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
public let userid: String // REQUIRED
public let body: String // REQUIRED
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?
public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?
public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?
public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?
public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

Example

let commentClient = CommentClient(config: config)
(continues on next page)

110 Chapter 15. Comment Client

Sportstalk SDK -iOS

(continued from previous page)

let request = CommentRequest.UpdateComment(
conversationid: "demo-conversation-id1",
commentid: "root-comment-id1",
userid: "yBommvwYYNBrxPwY",
body: "Updated Comment!?!"

)

// Perform operation
commentClient.updateComment(request) { (code: Int?, message: String?, kind: String?,␣
→˓response: Comment?) in
// ... Resolve `response` from here

}

15.17 Flag Comment As Deleted

func flagCommentLogicallyDeleted(_ request: CommentRequest.FlagCommentLogicallyDeleted,␣
→˓completionHandler: @escaping Completion<DeleteCommentResponse>)

Set Deleted (LOGICAL DELETE)

• The comment is not actually deleted. The comment is flagged as deleted, and can no longer be read, but replies
are not deleted.

• If flag “permanentifnoreplies” is true, then it will be a permanent delete instead of logical delete for this comment
if it has no children.

• If you use “permanentifnoreplies” = true, and this comment has a parent that has been logically deleted, and this
is the only child, then the parent will also be permanently deleted.

Parameters

• conversationid : (required) The ID of the comment conversation.

• commentid : (required) The unique ID of the comment, URL ENCODED.

• userid : (required) This is the application specific user ID of the user deleting the comment. Must be the owner
of the comment or authorized moderator.

• deleted : (required) Set to true or false to flag the comment as deleted. If a comment is deleted, then it will have
the deleted field set to true, in which case the contents of the comment should not be shown and the body of the
comment will not be returned by the API by default. If a previously deleted comment is undeleted, the flag for
deleted is set to false and the original comment body is returned.

• permanentifnoreplies : (optional) If this optional parameter is set to “true”, then if this comment has no replies
it will be permanently deleted instead of logically deleted. If a permanent delete is performed, the result will
include the field “permanentdelete=true”. If you want to mark a comment as deleted, and replies are still visible,
use “true” for the logical delete value. If you want to permanently delete the comment and all of its replies, pass
false.

Warning This method requires authentication

Request Model: CommentRequest.FlagCommentLogicallyDeleted

public class FlagCommentLogicallyDeleted: ParametersBase</*...*/> {
/// ...

(continues on next page)

15.17. Flag Comment As Deleted 111

Sportstalk SDK -iOS

(continued from previous page)

public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
public let userid: String // REQUIRED
public let deleted: Bool // REQUIRED
public var permanentifnoreplies: Bool?
/// ...

}

Response Model: DeleteCommentResponse

open class DeleteCommentResponse: Codable {
public var kind: String?
public var permanentdelete: Bool?
public var comment: Comment?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.FlagCommentLogicallyDeleted(

conversationid: "demo-conversation-id1",
commentid: "root-comment-id1",
userid: "yBommvwYYNBrxPwY",
deleted: true,
permanentifnoreplies: false

)

// Perform operation
commentClient.flagCommentLogicallyDeleted(request) { (code: Int?, message: String?,␣
→˓kind: String?, response: DeleteCommentResponse?) in
// ... Resolve `response` from here

}

15.18 Delete Comment (permanent)

func permanentlyDeleteComment(_ request: CommentRequest.PermanentlyDeleteComment,␣
→˓completionHandler: @escaping Completion<DeleteCommentResponse>)

DELETES a comment and all replies to that comment

Parameters

• conversationid : (required) The ID of the comment conversation.

• commentid : (required) The unique ID of the comment, URL ENCODED.

Warning This method requires authentication

Request Model: CommentRequest.PermanentlyDeleteComment

112 Chapter 15. Comment Client

Sportstalk SDK -iOS

public class PermanentlyDeleteComment: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
public let commentid: String // REQUIRED
/// ...

}

Response Model: DeleteCommentResponse

open class DeleteCommentResponse: Codable {
public var kind: String?
public var permanentdelete: Bool?
public var comment: Comment?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.PermanentlyDeleteComment(

conversationid: "demo-conversation-id1",
commentid: "root-comment-id1"

)

// Perform operation
commentClient.permanentlyDeleteComment(request) { (code: Int?, message: String?, kind:␣
→˓String?, response: DeleteCommentResponse?) in
// ... Resolve `response` from here

}

15.19 Delete Conversation

func deleteConversation(_ request: CommentRequest.DeleteConversation, completionHandler:␣
→˓@escaping Completion<DeleteConversationResponse>)

DELETES a Conversation, all Comments and Replies

• CANNOT BE UNDONE. This deletes all history of a conversation including all comments and replies within it.

Parameters

• conversationid : (required) The ID of the comment conversation.

Warning This method requires authentication

Request Model: CommentRequest.DeleteConversation

public class DeleteConversation: ParametersBase</*...*/> {
/// ...
public let conversationid: String // REQUIRED
/// ...

}

15.19. Delete Conversation 113

Sportstalk SDK -iOS

Response Model: DeleteConversationResponse

open class DeleteConversationResponse: Codable {
public var kind: String?
public var permanentdelete: Bool?
public var comment: Comment?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentRequest.DeleteConversation(

conversationid: "demo-conversation-id1"
)

// Perform operation
commentClient.deleteConversation(request) { (code: Int?, message: String?, kind: String?,
→˓ response: DeleteConversationResponse?) in
// ... Resolve `response` from here

}

15.20 List Comments in Moderation Queue

func listCommentsInModerationQueue(_ request: CommentModerationRequest.
→˓ListCommentsInModerationQueue, completionHandler: @escaping Completion
→˓<ListCommentsResponse>)

List all the comments in the moderation queue

Parameters

• limit: (optional) Defaults to 200. This limits how many messages to return from the queue

• cursor: (optional) Provide cursor value to get the next page of results.

• conversationid: (optional) Provide the ConversationID for a room to filter for only the queued events for a
specific room

• filterHandle: (optional) Filters using exact match for a handle of a user

• filterKeyword: (optional) Filters using substring search for your string

• filterModerationState: (optional) Filters for comments in the specified moderation state.

– approved: Moderator approved the comment

– rejected: Moderator rejected the comment

– pending: A new comment was posted to a premoderation room, and is pending review, but was never
reported as abuse

– flagged: Enough users reported the comment that it is in the flagged state and sent to moderation queue

Warning This method requires authentication

Request Model: CommentRequest.ListCommentsInModerationQueue

114 Chapter 15. Comment Client

Sportstalk SDK -iOS

public class ListCommentsInModerationQueue: ParametersBase</*...*/> {
/// ...
public var limit: Int?
public var cursor: String?
public var conversationid: String?
public var filterHandle: String?
public var filterKeyword: String?
public var filterModerationState: CommentModerationState?
/// ...

}

Response Model: ListCommentsResponse

open class ListCommentsResponse: Codable {
public var kind: String?
public var permanentdelete: Bool?
public var comment: Comment?

/// ...
}

Example

let commentClient = CommentClient(config: config)
let request = CommentModerationRequest.ListCommentsInModerationQueue()
// You may provide optional parameters as shown below:
// request.limit = 25
// request.cursor = "63bd442ccfce070c7825639a"
// request.conversationid = "demo-conversation-id1"
// request.filterHandle = nil
// request.filterKeyword = "foul"
// request.filterModerationState = CommentModerationState.pending

// Perform operation
commentClient.listCommentsInModerationQueue(request) { (code: Int?, message: String?,␣
→˓kind: String?, response: ListCommentsResponse?) in
// ... Resolve `response` from here

}

15.21 Approve/Reject Message in Queue

func approveMessageInQueue(_ request: CommentModerationRequest.ApproveRejectComment,␣
→˓completionHandler: @escaping Completion<Comment>)

APPROVES/REJECTS a message in the moderation queue.

If PRE-MODERATION is enabled for a conversation, then all messages go to the queue before they can appear in the
conversation. For each incomming message, a webhook will be fired, if one is configured.

If the conversation is set to use POST-MODERATION, messages will only be sent to the moderation queue if they are
reported.

Parameters

15.21. Approve/Reject Message in Queue 115

Sportstalk SDK -iOS

• commentid : (required) The unique ID of the comment, URL ENCODED.

• approve : (required) Pass true to approve the comment or false to reject the comment.

Warning This method requires authentication

Request Model: CommentRequest.ApproveRejectComment

public class ApproveRejectComment: ParametersBase</*...*/> {
/// ...
public let commentid: String // REQUIRED
public let approve: Bool // REQUIRED
/// ...

}

Response Model: Comment

open class Comment: Codable {
public var kind: String? // "comment.comment"
public var id: String?
public var appid: String?
public var conversationid: String?
public var commenttype: String? // "comment"
public var added: Date?
public var modified: Date?
public var tsunix: Int64?
public var userid: String?
public var user: User?
public var body: String?
public var originalbody: String?
public var hashtags: [String]?
public var shadowban: Bool?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var edited: Bool?
public var censored: Bool?
public var deleted: Bool?
public var parentid: String?
public var hierarchy: [String]?
public var reactions: [Reaction]?
public var likecount: Int64?
public var replycount: Int64?
public var votecount: Int64?
public var votescore: Int64?
public var votes: [Vote]?
public var moderation: String? // "approved", "pending", "rejected"
public var active: Bool?
public var reports: [Report]?

/// ...
}

116 Chapter 15. Comment Client

Sportstalk SDK -iOS

Example

let commentClient = CommentClient(config: config)
let request = CommentModerationRequest.ApproveRejectComment(

commentid: "root-comment-id1",
approve: true

)

// Perform operation
commentClient.approveMessageInQueue(request) { (code: Int?, message: String?, kind:␣
→˓String?, response: Comment?) in
// ... Resolve `response` from here

}

15.21. Approve/Reject Message in Queue 117

Sportstalk SDK -iOS

118 Chapter 15. Comment Client

CHAPTER

SIXTEEN

COPYRIGHT & LICENSE

Copyright (c) 2023 Sportstalk 24/7

119

	GETTING STARTED: Setting up the SDK
	Implement Custom JWT
	Callback Function Overview
	Creating/Updating a user
	Joining a Room
	Joining a Room using Custom ID
	Getting room updates
	Start/Stop Getting Event Updates
	Sending A Message
	Conversations and Comments
	The Bare Minimum
	Chat Application Best Practices
	User Client
	Create/Update User
	Delete User
	Get User Details
	List Users
	Ban/Unban User
	Global Purge User
	Search User
	Mute User
	Report User
	Shadow Ban User
	List User Notifications
	Mark All Notification As Read
	Set User Notification As Read
	Set User Notification As Read (By ChatEventId)
	Delete User Notification
	Delete User Notification By ChatEventId

	Chat Client
	Create Room
	Get Room Details
	Get Room Extended Details
	Get Room Details By Custom ID
	Delete Room
	Update Room
	Update and Close Room
	List Rooms
	List Room Participants
	List User Subscribed Rooms
	List Event History
	List Previous Events
	List Event By Type
	List Event By Timestamp
	Join Room
	Join Room by CustomId
	Exit Room
	Get Updates
	Get More Updates
	Execute Command
	Send Quoted Reply
	Send Threaded Reply
	List Messages By User
	Purge Message
	Flag Event As Locally Deleted
	Permanently Delete Event
	Delete All Events
	List Messages of User
	Report A Message
	React to an Event
	Report User in Room
	Bounce User
	Shadowban User
	Mute User
	Search Event History
	Update Chat Event
	Start Listening to Chat Updates
	Stop Listening to Chat Updates
	Approve Event
	Reject Event
	List All Messages In Moderation Queue

	Comment Client
	Create or Update Conversation
	Get Conversation by ID
	Find Conversation by CustomID
	List Conversations
	Batch Get Conversation Details
	React to Conversation Topic
	Create and Publish Comment
	Reply to Comment
	List Replies
	Get Comment by ID
	List Comments
	List Replies Batch
	React to Comment(“Like”)
	Vote on Comment
	Report Comment
	Update Comment
	Flag Comment As Deleted
	Delete Comment (permanent)
	Delete Conversation
	List Comments in Moderation Queue
	Approve/Reject Message in Queue

	Copyright & License

