
Sportstalk SDK -iOS

Theodore Angelo Lesano

Feb 12, 2021

CONTENTS

1 GETTING STARTED: Setting up the SDK 3

2 Callback Function Overview 5

3 Creating/Updating a user 7

4 Joining a Room 9

5 Joining a Room using Custom ID 11

6 Getting room updates 13

7 Start/Stop Getting Event Updates 15

8 Sending A Message 17

9 The Bare Minimum 19

10 Chat Application Best Practices 21

11 User Client 23
11.1 Create/Update User . 23
11.2 Delete User . 24
11.3 Get User Details . 25
11.4 List Users . 25
11.5 Ban/Unban User . 26
11.6 Global Purge User . 27
11.7 Search User . 27
11.8 Report User . 28
11.9 Shadow Ban User . 29
11.10 List User Notifications . 30
11.11 Mark All Notification As Read . 31
11.12 Set User Notification As Read . 31
11.13 Set User Notification As Read (By ChatEventId) . 32
11.14 Delete User Notification . 33
11.15 Delete User Notification By ChatEventId . 34

12 Chat Client 37
12.1 Create Room . 37
12.2 Get Room Details . 38
12.3 Get Room Details By Custom ID . 39
12.4 Delete Room . 40

i

12.5 Update Room . 41
12.6 Update and Close Room . 42
12.7 List Rooms . 43
12.8 List Room Participants . 44
12.9 List Event History . 45
12.10 List Previous Events . 45
12.11 List Event By Type . 46
12.12 List Event By Timestamp . 47
12.13 Join Room . 48
12.14 Join Room by CustomId . 50
12.15 Exit Room . 51
12.16 Get Updates . 52
12.17 Get More Updates . 53
12.18 Execute Command . 54
12.19 Send Quoted Reply . 56
12.20 Send Threaded Reply . 57
12.21 List Messages By User . 59
12.22 Purge Message . 59
12.23 Flag Event As Locally Deleted . 60
12.24 Permanently Delete Event . 61
12.25 Delete All Events . 62
12.26 List Messages of User . 62
12.27 Report A Message . 63
12.28 React to an Event . 64
12.29 Report User in Room . 65
12.30 Bounce User . 67
12.31 Search Event History . 67
12.32 Update Chat Event . 69
12.33 Start Listening to Chat Updates . 70
12.34 Stop Listening to Chat Updates . 71
12.35 Approve Event . 71
12.36 Reject Event . 72
12.37 List All Messages In Moderation Queue . 73

13 Copyright & License 75

ii

Sportstalk SDK -iOS

The Sportstalk SDK is a helpful wrapper around the Sportstalk API

The set of SDKs and source (iOS, Android, and JS) is here: https://gitlab.com/sportstalk247/

pod 'SportsTalk_iOS_SDK', :git=> 'https://gitlab.com/sportstalk247/sdk-ios-swift.git'

You will need to register with SportsTalk and get an API Key in order to use SDK functions.

CONTENTS 1

http://https://apiref.sportstalk247.com/?version=latest
https://gitlab.com/sportstalk247/

Sportstalk SDK -iOS

2 CONTENTS

CHAPTER

ONE

GETTING STARTED: SETTING UP THE SDK

This Sportstalk SDK is meant to power custom chat applications. Sportstalk does not enforce any restricitons on
your UI design, but instead empowers your developers to focus on the user experience without worrying about the
underlying chat behavior.

Sportstalk is an EVENT DRIVEN API. When new talk events occur, the SDK will trigger appropriate callbacks, if
set.

import SportsTalk_iOS_SDK

// First you'll need to create a ClientConfig class that you can use later on
let config = ClientConfig(appId: "YourAppId", authToken: "YourApiKey", endpoint:
→˓"Your URL")
let client = UserClient(config: config)

// You can set config to have your own endpoint or use the default endpoint like so
let config = ClientConfig(appId: "YourAppId", authToken: "YourApiKey")

3

Sportstalk SDK -iOS

4 Chapter 1. GETTING STARTED: Setting up the SDK

CHAPTER

TWO

CALLBACK FUNCTION OVERVIEW

Each and every api function has its callback, when the api is called you will get the response in the callback. You can
use this to remove loading screens, hide advertisements, and so on.

5

Sportstalk SDK -iOS

6 Chapter 2. Callback Function Overview

CHAPTER

THREE

CREATING/UPDATING A USER

Invoke this API method if you want to create a user or update an existing user.

When users send messages to a room the user ID is passed as a parameter. When you retrieve the events from a room,
the user who generated the event is returned with the event data, so it is easy for your application to process and render
chat events with minimal code.

import SportsTalk_iOS_SDK

let client = UserClient(config: config)

// Almost all api is designed to have a request and response model.

func createUser() {
// To create a request, make use of the Services convenience class
let request = UserRequest.CreateUpdateUser()
request.userid = "SomeUserId"
request.handle = "Sam"
request.displayname = "Sam"
request.pictureurl = URL(string: <some_url>)
request.profileurl = URL(string: <some_url>)

client.createOrUpdateUser(request) { (code, message, kind, user) in
// where; code: Int?, message: String?, kind: String?, user: User?
// Save user

}
}

7

Sportstalk SDK -iOS

8 Chapter 3. Creating/Updating a user

CHAPTER

FOUR

JOINING A ROOM

let client = ChatClient(config: config)

func JoinRoom(_ room: ChatRoom, as user: User) {
let request = ChatRequest.JoinRoom()
request.roomid = room.id
request.userid = user.userid
request.displayname = user.displayname

client.joinRoom(request) { (code, message, _, response) in
// where response is model JoinChatRoomResponse
// Process response

}
}

9

Sportstalk SDK -iOS

10 Chapter 4. Joining a Room

CHAPTER

FIVE

JOINING A ROOM USING CUSTOM ID

let client = ChatClient(config: config)

func JoinRoom(_ room: ChatRoom, as user: User) {
let request = ChatRequest.JoinRoomByCustomId()
request.userid = user.userid
request.displayname = user.displayname
request.customid = room.customid

client.joinRoomByCustomId(request) { (code, message, _, response) in
// where response is model called JoinChatRoomResponse
// Process response

}
}

11

Sportstalk SDK -iOS

12 Chapter 5. Joining a Room using Custom ID

CHAPTER

SIX

GETTING ROOM UPDATES

To manually get room updates, use ChatClient().getUpdates(request:completionHandler)

let client = ChatClient(config: config)

func getUpdates(_ room: ChatRoom) {
let request = ChatRequest.GetUpdates()
request.roomid = room.id
request.limit = 20

client.getUpdates(request) { (code, message, _, response) in
// where response is model called GetUpdatesResponse
// Get an array of events from response.events

}
}

13

Sportstalk SDK -iOS

14 Chapter 6. Getting room updates

CHAPTER

SEVEN

START/STOP GETTING EVENT UPDATES

Get periodic updates from room by using client.startListeningToChatUpdates(completionHandler:
@escaping Completion<[Event]>) Only new events will be emitted, so it is up to you to collect the new
events. To stop getting updates, simply call client.stopListeningToChatUpdates() anytime.

Note: Updates are received every 500 milliseconds. Losing reference to client will stop the eventUpdates

let client = ChatClient(config: config)
var events = [Event]()

func receiveUpdates(from room: ChatRoom) {
client.startListeningToChatUpdates() { (code, message, _, event) in

if let event = event {
events.append(event)

}

// Debug pulse
print("------------")
print(code == 200 ? "pulse success" : "pulse failed")
print((event?.count ?? 0) > 0 ? "received \(event?.count) event" : "No new

→˓events")
print("------------")
receivedCode = code

}
}

func stopUpdates() {
// Ideally call this on viewDidDisappear() and deinit()
client.stopListeningToChatUpdates()

}

15

Sportstalk SDK -iOS

16 Chapter 7. Start/Stop Getting Event Updates

CHAPTER

EIGHT

SENDING A MESSAGE

Use SAY command to send a message to the room.

example: SAY Hello World! or simply Hello World!

Perform ACTIONS by using / character

example: /dance nicole

• User sees: You dance with Nicole

• Nicole sees: (user) dances with you

• Everyone else sees: (user) dances with Nicole

This requires that the action command dance is on the approved list of commands and Nicole is the handle of a
participant in the room, and that actions are allowed in the room

let client = ChatClient(config: config)

func send(message: String, to room: ChatRoom, as user: User) {
// See for list of commands
let request = ChatRequest.ExecuteChatCommand()
request.roomId = room.id
request.command = "SAY \(message)"
request.userid = user.userid

client.executeChatCommand(request) { (code, message, _, response) in
// where response is model ExecuteChatCommandResponse
// Process response

}
}

For use of these events in action, see the demo page: https://www.sportstalk247.com/demo.html

17

https://www.sportstalk247.com/demo.html

Sportstalk SDK -iOS

18 Chapter 8. Sending A Message

CHAPTER

NINE

THE BARE MINIMUM

The only critical events that you need to handle are ExecuteChatCommand which will be called for each new
chat event and PurgeMessage which will be called when purge commands are issued to clear messages that violate
content policy.

You will probably also want to use ExecuteChatCommand to show/hide any loading messages.

The easiest way to see how these event works is to see the demo page: https://www.sportstalk247.com/demo.html

19

https://www.sportstalk247.com/demo.html

Sportstalk SDK -iOS

20 Chapter 9. The Bare Minimum

CHAPTER

TEN

CHAT APPLICATION BEST PRACTICES

Do not ‘fire and forget’ chat messages. Most chat applications require some level of moderation. Your UI should make
sure to keep track of message metadata such as:

• Message ID

• User Handle for each message.

• User ID for each message. In the event of moderation or purge events, your app will need to be able to find and
remove purged messages.

• Timestamp

Make sure you handle errors for sending messages in case of network disruption.

Enable/Disable debug mode with SportsTalkSDK.shared.debugMode = true/false

21

Sportstalk SDK -iOS

22 Chapter 10. Chat Application Best Practices

CHAPTER

ELEVEN

USER CLIENT

11.1 Create/Update User

func createOrUpdateUser(_ request: UserRequest.CreateUpdateUser, completionHandler:
→˓@escaping Completion<User>)

All users must have a Handle. The display name is optional. If you create a user and don’t provide a handle, but you
do provide a display name, a handle will be generated for you based on the provided display name. The generated
handle will not be able to contain all characters or spaces, and could have numbers appended to the end.

Invoke this API method if you want to create a user or update an existing user.

Do not use this method to convert an anonymous user into a known user. Use the Convert User api method instead.

When users send messages to a room the user ID is passed as a parameter. When you retrieve the events from a room,
the user who generated the event is returned with the event data, so it is easy for your application to process and render
chat events with minimal code.

Parameters

• userid: (required) If the userid is new then the user will be created. If the userid is already in use in the database
then the user will be updated.

• handle: (optional) A unique string representing the user that is easy for other users to type. Example @George-
Washington could be the handle but Display Name could be “Wooden Teef For The Win”.

• displayname: (optional) This is the desired name to display, typically the real name of the person.

• pictureurl: (optional) The URL to the picture for this user.

• profileurl: (optional) The profileurl for this user.

Note about handles

• If you are creating a user and you don’t specify a handle, the system will generate one for you (using Display
Name as basis if you provide that).

• If you request a handle and it’s already in use a new handle will be generated for you by adding a number from
1-99 and returned.

• If the handle can’t be generated because all the options 1-99 on the end of it are taken then the request will be
rejected with BadRequest status code.

• Only these characters may be used: “abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_”

Request Model: UserRequest.CreateUpdateUser

23

Sportstalk SDK -iOS

public class CreateUpdateUser {
public var userid: String?
public var handle: String?
public var displayname: String?
public var pictureurl: URL?
public var profileurl: URL?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

11.2 Delete User

func deleteUser(_ request: UserRequest.DeleteUser, completionHandler: @escaping
→˓Completion<DeleteUserResponse>)

Deletes the specified user.

All rooms with messages by that user will have the messages from this user purged in the rooms.

Parameters

• userid: (required) is the app specific User ID provided by your application.

Warning This method requires authentication

Request Model: UserRequest.DeleteUser

public class DeleteUser {
public var userid: String?

}

Response Model: DeleteUserResponse

public struct DeleteUserResponse: Codable {
public var kind: String?
public var user: User?

}

24 Chapter 11. User Client

Sportstalk SDK -iOS

11.3 Get User Details

func getUserDetails(_ request: UserRequest.GetUserDetails, completionHandler:
→˓@escaping Completion<User>)

Get the details about a User.

This will return all the information about the user.

Parameters

• userid: (required) is the app specific User ID provided by your application.

Warning This method requires authentication

Request Model: UserRequest.GetUserDetails

public class GetUserDetails {
public var userid: String?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

11.4 List Users

func listUsers(_ request: UserRequest.ListUsers, completionHandler: @escaping
→˓Completion<ListUsersResponse>)

Gets a list of users.

Use this method to cursor through a list of users. This method will return users in the order in which they were created,
so it is safe to add new users while cursoring through the list.

Parameters

• cursor: (optional) Each call to ListUsers will return a result set with a ‘nextCursor’ value. To get the next page of
users, pass this value as the optional ‘cursor’ property. To get the first page of users, omit the ‘cursor’ argument.

• limit: (optional) You can omit this optional argument, in which case the default limit is 200 users to return.

11.3. Get User Details 25

Sportstalk SDK -iOS

Warning This method requires authentication

Request Model: UserRequest.ListUsers

public class ListUsers {
public var cursor: String?
public var limit: Int? = 200

}

Response Model: ListUsersResponse

public struct ListUsersResponse: Codable {
public var kind: String?
public var cursor: String?
public var users: [User]

}

11.5 Ban/Unban User

func setBanStatus(_ request: UserRequest.SetBanStatus, completionHandler: @escaping
→˓Completion<User>)

Will toggle the user’s banned flag.

Parameters

• userid: (required) The applicaiton provided userid of the user to ban

• banned: (required) Boolean. If true, user will be set to banned state. If false, wbe set to non-banned state.

Request Model: UserRequest.SetBanStatus

public class SetBanStatus {
public var userid: String?
public var banned: Bool?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

26 Chapter 11. User Client

Sportstalk SDK -iOS

11.6 Global Purge User

func globallyPurgeUserContent(_ request: UserRequest.GloballyPurgeUserContent,
→˓completionHandler: @escaping Completion<GlobalPurgeReponse>)

Will purge all chat content published by the specified user

Parameters

• userid: (required) The application provided userid of the user to ban

Request Model: UserRequest.GloballyPurgeUserContent

public class GloballyPurgeUserContent {
public var userid: String?
public var banned: Bool?

}

Response Model: GlobalPurgeReponse

public struct GlobalPurgeReponse: Codable {}

11.7 Search User

func searchUser(_ request: UserRequest.SearchUser, completionHandler: @escaping
→˓Completion<ListUsersResponse>)

Searches the users in an app

Use this method to cursor through a list of users. This method will return users in the order in which they were created,
so it is safe to add new users while cursoring through the list.

Parameters

• cursor: (optional) Each call to ListUsers will return a result set with a ‘nextCursor’ value. To get the next page of
users, pass this value as the optional ‘cursor’ property. To get the first page of users, omit the ‘cursor’ argument.

• limit: (optional) You can omit this optional argument, in which case the default limit is 200 users to return.

• name: (optional) Provide part of a name to search the user name field

• handle: (optional) Provide part of a handle to search by handle

• userid: (optional) Provide part of a userid to search by userid

Note At least one of these parameters is required; - userid - handle - name

Warning This method requires authentication

Request Model: UserRequest.SearchUser

public class SearchUser {
public var cursor:String?
public var limit:Int?
public var name:String?
public var handle:String?
public var userid:String?

}

11.6. Global Purge User 27

Sportstalk SDK -iOS

Response Model: ListUsersResponse

public struct ListUsersResponse: Codable {
public var kind: String?
public var cursor: String?
public var users: [User]

}

11.8 Report User

func reportUser(_ request: UserRequest.ReportUser, completionHandler: @escaping
→˓Completion<User>)

Paramters

• userid: (required) This is the application specific user ID of the user reporting the first user.

• reporttype: (required) Possible values: “abuse”, “spam”. SPAM is unsolicited commercial messages and abuse
is hate speach or other unacceptable behavior.

RESPONSE CODES

• 200 | Success : Request completed successfully

• 404 | Not Found : The specified user or application could not be found

• 409 | Conflict : The request was rejected because user reporting is not enabled for the application

Request Model: UserRequest.ReportUser

public class ReportUser {
public var userid: String?
public var reporttype = "abuse"

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

28 Chapter 11. User Client

Sportstalk SDK -iOS

11.9 Shadow Ban User

func setShadowBanStatus(_ request: UserRequest.SetShadowBanStatus, completionHandler:
→˓@escaping Completion<User>)

Will toggle the user’s shadow banned flag

A Shadow Ban user can send messages into a chat room, however those messages are flagged as shadow banned. This
enables the application to show those messags only to the shadow banned user, so that that person may not know they
were shadow banned. This method shadow bans the user on the global level (or you can use this method to lift the
ban). You can optionally specify an expiration time. If the expiration time is specified, then each time the shadow
banned user tries to send a message the API will check if the shadow ban has expired and will lift the ban.

Parameters

• userid: (required) The applicaiton provided userid of the user to ban

• shadowban: (required) true or false. If true, user will be set to banned state. If false, will be set to non-banned
state.

• expireseconds: (optional) Duration of shadowban value in seconds. If specified, the shadow ban will be lifted
when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a
double byte value.

Request Model: UserRequest.ReportUser

public class SetShadowBanStatus {
public var userid: String?
public var shadowban: Bool?
public var expireseconds: Int?

}

Response Model: User

open class User: NSObject, Codable {
public var kind: String?
public var userid: String?
public var handle: String?
public var profileurl: String?
public var banned: Bool?
public var shadowbanned: Bool?
public var shadowbanexpires: Date?
public var moderation: String?
public var displayname: String?
public var handlelowercase: String?
public var pictureurl: String?
public var reports: [UserReport]?
public var role: Role?
public var customtags: [String]?

}

11.9. Shadow Ban User 29

Sportstalk SDK -iOS

11.10 List User Notifications

func listUserNotifications(_ request: UserRequest.ListUserNotifications,
→˓completionHandler: @escaping Completion<ListNotificationResponse>)

Returns a list of user notifications

Parameters

• userid: (required) Return only notifications for this user

• filternotificationtypes: (optional) Return only events of the specified type. Pass the argument more than once to
fetch multiple types of notifications at once.

– chatmention

– chatquote

– chatreply

– commentmention

– commentquote

– commentreply

• includeread: (optional | default = false) If true, notifications that have already been read are returned

• filterchatroomid: (optional) If provided, this will only return notifications associated with the specified chat
room using the ChatRoom ID (exact match)

• filterchatroomcustomid: (optional) If provided, this will only return notifications associated with the specified
chat room using the Custom ID (exact match)

• limit: (optional) Default is 50, maximum is 200. Limits how many items are returned.

• cursor: (optional) Leave blank to start from the beginning of the result set; provide the value from the previous
returned cursor to resume cursoring through the next page of results

Request Model: UserRequest.ListUserNotifications

public class ListUserNotifications {
public var userid: String?
public var filternotificationtypes: String?
public var includeread: Bool? = false
public var filterchatroomid: String?
public var filterchatroomcustomid: String?
public var limit: Int? = 50
public var cursor: String? = ""

}

Response Model: ListNotificationResponse

public struct ListNotificationResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int?
public var notifications: [UserNotification]?

}

30 Chapter 11. User Client

Sportstalk SDK -iOS

11.11 Mark All Notification As Read

func markAllNotificationAsRead(_ request: UserRequest.MarkAllNotificationAsRead,
→˓completionHandler: @escaping Completion<UserNotification>)

This marks all of the user’s notifications as read with one API call only. Due to caching, a call to List User Notifications
may still return items for a short time. Set delete = true to delete the notification instead of marking it read. This should
be used for most use cases.

Parameters

• userid: (required) The ID of the user marking the notification as read.

• delete: (optional) [default=true] If true, this deletes the notification. If false, it marks it read but does not delete
it.

Request Model: UserRequest.MarkAllNotificationAsRead

public class MarkAllNotificationAsRead {
public var userid: String?
public var delete: Bool? = true

}

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

11.12 Set User Notification As Read

func setUserNotificationAsRead(_ request: UserRequest.SetUserNotificationAsRead,
→˓completionHandler: @escaping Completion<UserNotification>)

Set User Notification as Read

Unless your workflow must support use of read notifications, instead use `func deleteUserNotification(_
request:completionHandler:)`

This marks a notification as being in READ status. That will prevent the notification from being returned in a call
to List User Notifications unless the default filters are overridden. Notifications that are marked as read will be
automatically deleted after some time.

11.11. Mark All Notification As Read 31

Sportstalk SDK -iOS

Calling this over and over again for an event, or calling it on events where the reader is not the person that the reply is
directed to, or calling it against events that are not type ChatReply or ChatQuote is inappropriate use of the API

Parameters

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• notificationid: (required) The unique ID of the notification being updated

• read: (required) The read status (true/false) for the notification. You can pass false to mark the notification as
unread

Request Model: UserRequest.SetUserNotificationAsRead

public class SetUserNotificationAsRead {
public var userid: String?
public var notificationid: String?
public var read: Bool? = false

}

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

11.13 Set User Notification As Read (By ChatEventId)

func setUserNotificationAsReadByEventId(_ request: UserRequest.
→˓SetUserNotificationAsReadByChatEventId, completionHandler: @escaping Completion
→˓<UserNotification>)

Unless your workflow must support use of read notifications, use `func deleteUserNotification(_
request:completionHandler:)` instead.

• This marks a notification as being in READ status.

• That will prevent the notification from being returned in a call to List User Notifications unless the default filters
are overridden.

• Notifications that are marked as read will be automatically deleted after some time.

• Only call this once per event. Only call this for events of type ChatReply or ChatQuote

Parameters

32 Chapter 11. User Client

Sportstalk SDK -iOS

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• chateventid: (required) The unique ID of the notification’s chatEvent.

• read: (required) The read status (true/false) for the notification. You can pass false to mark the notification as
unread.

Request Model: UserRequest.SetUserNotificationAsReadByChatEventId

public class SetUserNotificationAsReadByChatEventId {
public var userid: String?
public var eventid: String?
public var read: Bool? = false

}

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

11.14 Delete User Notification

func deleteUserNotification(_ request: UserRequest.DeleteUserNotification,
→˓completionHandler: @escaping Completion<UserNotification>)

Deletes a User Notification

Immediately deletes a user notification. Unless your workflow specifically implements access to read notifications,
you should delete notifications after they are consumed.

Parameters

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• notificationid: (required) The unique ID of the notification being updated.

Request Model: UserRequest.DeleteUserNotification

public class DeleteUserNotification {
public var userid: String?
public var notificationid: String?

}

11.14. Delete User Notification 33

Sportstalk SDK -iOS

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?
public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

11.15 Delete User Notification By ChatEventId

func deleteUserNotificationByEventId(_ request: UserRequest.
→˓DeleteUserNotificationByChatEventId, completionHandler: @escaping Completion
→˓<UserNotification>)

Deletes a User Notification

Immediately deletes a user notification. Unless your workflow specifically implements access to read notifications,
you should delete notifications after they are consumed.

Parameters

• userid: (required) The ID of the user marking the notification as read. This is used to ensure a user can’t mark
another user’s notification as read.

• chateventid: (required) The unique ID of the notification’s chatEvent.

Request Model: UserRequest.DeleteUserNotificationByChatEventId

public class DeleteUserNotificationByChatEventId {
public var userid: String?
public var chateventid: String?

}

Response Model: UserNotification

open class UserNotification: Codable {
public var kind: String?
public var id: String?
public var added: Date?
public var userid: String?
public var ts: Date?
public var whenread: String?
public var isread: Bool?
public var notificationtype: String?
public var chatroomid: String?
public var chatroomcustomid: String?

(continues on next page)

34 Chapter 11. User Client

Sportstalk SDK -iOS

(continued from previous page)

public var commentconversationid: String?
public var commentconversationcustomid: String?
public var chateventid: String?
public var commentid: String?

}

11.15. Delete User Notification By ChatEventId 35

Sportstalk SDK -iOS

36 Chapter 11. User Client

CHAPTER

TWELVE

CHAT CLIENT

12.1 Create Room

func createRoom(_ request: ChatRequest.CreateRoom, completionHandler: @escaping
→˓Completion<ChatRoom>)

Creates a new chat room

Parameters

• name: (required) The name of the room

• customid: (optional) A customid for the room. Can be unused, or a unique key.

• description: (optional) The description of the room

• moderation: (required) The type of moderation.

– pre - marks the room as Premoderated

– post - marks the room as Postmoderated

• enableactions: (optional) [true/false] Turns action commands on or off

• enableenterandexit: (optional) [true/false] Turn enter and exit events on or off. Disable for large rooms to reduce
noise.

• enableprofanityfilter: (optional) [default=true / false] Enables profanity filtering.

• delaymessageseconds: (optional) [default=0] Puts a delay on messages from when they are submitted until they
show up in the chat. Used for throttling.

• maxreports: (optiona) Default is 3. This is the maximum amount of user reported flags that can be applied to a
message before it is sent to the moderation queue

Warning This method requires authentication

Request Model: ChatRequest.CreateRoom

public class CreateRoom {
public var name: String?
public var customid: String?
public var description: String?
public var moderation: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var enableprofanityfilter: Bool?
public var roomisopen: Bool?

(continues on next page)

37

Sportstalk SDK -iOS

(continued from previous page)

public var maxreports: Int? = 3
}

Response Model: ChatRoom

open class ChatRoom: Codable {
public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?

}

12.2 Get Room Details

func getRoomDetails(_ request: ChatRequest.GetRoomDetails, completionHandler:
→˓@escaping Completion<ChatRoom>)

Get the details for a room

This will return all the settings for the room and the participant count but not the participant list

Parameters

• roomid: (required) Room id of a specific room againts which you want to fetch the details

Warning This method requires authentication

Request Model: ChatRequest.GetRoomDetails

public class GetRoomDetails {
public var roomid: String?

}

Response Model: ChatRoom

open class ChatRoom: Codable {
public var kind: String?

(continues on next page)

38 Chapter 12. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?

}

12.3 Get Room Details By Custom ID

func getRoomDetailsByCustomId(_ request: ChatRequest.GetRoomDetailsByCustomId,
→˓completionHandler: @escaping Completion<ChatRoom>)

Get the details for a room

This will return all the settings for the room and the participant count but not the participant list

Parameters

• customid: Custom Id of a specific room againts which you want to fetch the details.

Warning This method requires authentication

Request Model: ChatRequest.GetRoomDetails

public class GetRoomDetailsByCustomId {
public var customid: String?

}

Response Model: ChatRoom

open class ChatRoom: Codable {
public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?

(continues on next page)

12.3. Get Room Details By Custom ID 39

Sportstalk SDK -iOS

(continued from previous page)

public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?

}

12.4 Delete Room

func deleteRoom(_ request: ChatRequest.DeleteRoom, completionHandler: @escaping
→˓Completion<DeleteChatRoomResponse>)

Permanently deletes a chat room

This cannot be reversed. This command permanently deletes the chat room and all events in it.

Parameters

• roomid: (required) that you want to delete

Warning This method requires authentication

Request Model: ChatRequest.DeleteRoom

public class DeleteRoom {
public var roomid: String?

}

Response Model: DeleteChatRoomResponse

public struct DeleteChatRoomResponse: Codable {
public var kind: String?
public var deletedEventsCount: Int64?
public var room: ChatRoom?

}

40 Chapter 12. Chat Client

Sportstalk SDK -iOS

12.5 Update Room

func updateRoom(_ request: ChatRequest.UpdateRoom, completionHandler: @escaping
→˓Completion<ChatRoom>)

Updates an existing room

Parameters

• roomid: (required) The ID of the existing room.

• userid: (optional) The owner of the room.

• name: (optional) The name of the room.

• description: (optional) The description of the room.

• moderation: (optional) [premoderation/postmoderation] Defaults to post-moderation.

• enableactions: (optional) [true/false] Turns action commands on or off.

• enableenterandexit: (optional) [true/false] Turn enter and exit events on or off. Disable for large rooms to reduce
noise.

• enableprofanityfilter: (optional) [default=true / false] Enables profanity filtering.

• delaymessageseconds: (optional) [default=0] Puts a delay on messages from when they are submitted until they
show up in the chat. Used for throttling

• roomisopen: (optional) [true/false] If false, users cannot perform any commands in the room, chat is suspended.

• throttle: (optional) [default=0] This is the number of seconds to delay new incomming messags so that the chat
room doesn’t scroll messages too fast

Warning This method requires authentication

Request Model: ChatRequest.UpdateRoom

public class UpdateRoom {
public var roomid: String?
public var name: String?
public var description: String?
public var customid: String?
public var moderation: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int?
public var roomisopen: Bool?
public var throttle: Int?
public var userid: String?

}

Response Model: ChatRoom

open class ChatRoom: Codable {
public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?

(continues on next page)

12.5. Update Room 41

Sportstalk SDK -iOS

(continued from previous page)

public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?

}

12.6 Update and Close Room

func updateCloseRoom(_ request: ChatRequest.UpdateRoomCloseARoom, completionHandler:
→˓@escaping Completion<ChatRoom>)

Updates an existing room

Parameters

• roomid: (required) The ID of the existing room

• name: (optional) The name of the room

• description: (optional) The description of the room

• moderation: (optional) [premoderation/postmoderation] Defaults to post-moderation.

• enableactions: (optional) [true/false] Turns action commands on or off

• enableenterandexit: (optional) [true/false] Turn enter and exit events on or off. Disable for large rooms to reduce
noise.

• enableprofanityfilter: (optional) [default=true / false] Enables profanity filtering.

• delaymessageseconds: (optional) [default=0] Puts a delay on messages from when they are submitted until they
show up in the chat. Used for throttling.

• roomisopen: (optional) [true/false] If false, users cannot perform any commands in the room, chat is suspended.

Warning This method requires authentication

Request Model: ChatRequest.UpdateRoomCloseARoom

public class UpdateRoomCloseARoom {
public var roomid: String?
public var name: String?
public var description: String?
public var moderation: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?

(continues on next page)

42 Chapter 12. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int?
public var roomisopen: Bool? = false
public var userid: String?

}

Response Model: ChatRoom

open class ChatRoom: Codable {
public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?

}

12.7 List Rooms

func listRooms(_ request: ChatRequest.ListRooms, completionHandler: @escaping
→˓Completion<ListRoomsResponse>)

List all the available public chat rooms

Rooms can be public or private. This method lists all public rooms that everyone can see.

Parameters

• cursor: (optional) The first time you call list rooms, omit this property to start from the beginning. Call the
method again passing in the value returned in the cursor field of the response to get the next page of results. If
there are more results available, more will be true.

• limit: (optional) Specify the number of items to return. Default is 200

Warning This method requires authentication

Request Model: ChatRequest.ListRooms

public class ListRooms {
public var cursor: String?

(continues on next page)

12.7. List Rooms 43

Sportstalk SDK -iOS

(continued from previous page)

public var limit: Int = 200
}

Response Model: ListRoomsResponse

public struct ListRoomsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var rooms: [ChatRoom]

}

12.8 List Room Participants

func listRoomParticipants(_ request: ChatRequest.ListRoomParticipants,
→˓completionHandler: @escaping Completion<ListChatRoomParticipantsResponse>)

List all the participants in the specified room

Use this method to cursor through the people who have subscribe to the room.

To cursor through the results if there are many participants, invoke this function many times. Each result will return a
cursor value and you can pass that value to the next invokation to get the next page of results. The result set will also
include a next field with the full URL to get the next page, so you can just keep reading that and requesting that URL
until you reach the end. When you reach the end, no more results will be returned or the result set will be less than
maxresults and the next field will be empty.

Parameters

• roomid: (required) room id that you want to list the participants

• cursor: (optional) you can pass that value to the next invokation to get the next page of results

• limit: (optional) default is 200

Warning This method requires authentication

Request Model: ChatRequest.ListRoomParticipants

public class ListRoomParticipants {
public var roomid: String?
public var cursor: String? = ""
public var limit: Int? = 200

}

Response Model: ListChatRoomParticipantsResponse

public struct ListChatRoomParticipantsResponse: Codable {
public var kind: String?
public var cursor: String?
public var participants: [ChatRoomParticipant]

}

44 Chapter 12. Chat Client

Sportstalk SDK -iOS

12.9 List Event History

func listEventHistory(_ request: ChatRequest.ListEventHistory, completionHandler:
→˓@escaping Completion<ListEventsResponse>)

• This method enables you to download all of the events from a room in large batches. It should only be used if
doing a data export.

• This method returns a list of events sorted from oldest to newest.

• This method returns all events, even those in the inactive state

Parameters

• roomid: (required) Room id where you want event history to be listed

• limit: (optional) default is 100, maximum 2000

• cursor: (optional) If not provided, the most recent events will be returned. To get older events, call this method
again using the cursor string returned from the previous call.

Request Model: ChatRequest.ListEventHistory

public class ListEventHistory {
public var roomid: String?
public var cursor: String? = ""
public var limit: Int? = 100

}

Response Model: ListEventsResponse

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var events: [Event]

}

12.10 List Previous Events

func listPreviousEvents(_ request: ChatRequest.ListPreviousEvents, completionHandler:
→˓@escaping Completion<ListEventsResponse>)

This method allows you to go back in time to “scroll” in reverse through past messages. The typical use case for this
method is to power the scroll-back feature of a chat window allowing the user to look at recent messages that have
scrolled out of view. It’s intended use is to retrieve small batches of historical events as the user is scrolling up.

• This method returns a list of events sorted from newest to oldest.

• This method excludes events that are not in the active state (for example if they are removed by a moderator)

• This method excludes non-displayable events (reaction, replace, remove, purge)

• This method will not return events that were emitted and then deleted before this method was called

Parameters

• roomid: (required) Room id where you want previous events to be listed

12.9. List Event History 45

Sportstalk SDK -iOS

• limit: (optional) default is 100, maximum 500

• cursor: (optional) If not provided, the most recent events will be returned. To get older events, call this method
again using the cursor string returned from the previous call.

Request Model: ChatRequest.ListPreviousEvents

public class ListPreviousEvents {
public var roomid: String?
public var cursor: String?
public var limit: Int? = 100

}

Response Model: ListEventsResponse

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var events: [Event]

}

12.11 List Event By Type

func listEventByType(_ request: ChatRequest.ListEventByType, completionHandler:
→˓@escaping Completion<ListEventsResponse>)

• This method enables you to retrieve a small list of recent events by type. This is useful for things like fetching
a list of recent announcements or custom event types without the need to scroll through the entire chat history.

• This method returns a list of events sorted from newest to oldest.

• This method returns only active events.

Parameters

• roomid: (required) Room id where you want previous events to be listed

• eventtype: (required)

• limit: (optional) default is 10, maximum 100

• cursor: (optional) If not provided, the most recent events will be returned. To get older events, call this method
again using the cursor string returned from the previous call.

Request Model: ChatRequest.ListEventByType

public class ListPreviousEvents {
public var roomid: String?
public var eventtype: EventType?
public var cursor: String?
public var limit: Int? = 10

}

Response Model: ListEventsResponse

46 Chapter 12. Chat Client

Sportstalk SDK -iOS

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var events: [Event]

}

12.12 List Event By Timestamp

func listEventByTimestamp(_ request: ChatRequest.ListEventByTimestamp,
→˓completionHandler: @escaping Completion<ListEventsResponse>)

• This method enables you to retrieve an event using a timestamp.

• You can optionally retrieve a small number of displayable events before and after the message at the requested
timestamp.

• This method returns a list of events sorted from oldest to newest.

• This method returns only active events.

• The timestamp is a high resolution timestamp accurate to the thousanth of a second. It is possible, but very
unlikely, for two messages to have the same timestamp.

• The method returns “timestampolder”. This can be passed as the timestamp value when calling functions like
this which accept a timestamp to retrieve data.

• The method returns “timestampnewer”. This can be passed as the timestamp value when calling this function
again.

• The method returns “cursorpolder”. This can be passed as the cursor to ethods that accept an events-sorted-by-
time cursor.

• The method returns “cursornewer”. This can be passed as the cursor to methods that accept an events-sorted-
by-time cursor.

Limitation

If you pass in 0 for limitolder you won’t get any older events than your timestamp and hasmoreolder will always be
false because the API will not query for older events. If you pass in 0 for limitnewer you won’t get any newer events
than your timestamp and hasmorenewer will always be false because the API will not query for newer events

Parameters

• roomid: (required) Room id where you want previous events to be listed

• ts: (required) If not provided, the most recent events will be returned. To get older events, call this method again
using the cursor string returned from the previous call

• limitolder: (optional) Defaults to 0, maximum 100.

• limitnewer : (optional) Defaults to 0, maximum 100

Request Model: ChatRequest.ListEventByType

public class ListPreviousEvents {
public var roomid: String?
public var timestamp: Int?

(continues on next page)

12.12. List Event By Timestamp 47

Sportstalk SDK -iOS

(continued from previous page)

public var limitolder: Int? = 0
public var limitnewer: Int? = 0

}

Response Model: ListEventByTimestampResponse

public struct ListEventByTimestampResponse: Codable {
public var kind: String?
public var cursorolder: String?
public var cursornewer: String?
public var timestampolder: Int?
public var timestampnewer: Int?
public var hasmoreolder: Bool?
public var hasmorenewer: Bool?
public var itemcount: Int64?
public var events: [Event]

}

12.13 Join Room

func joinRoom(_ request: ChatRequest.JoinRoom, completionHandler: @escaping Completion
→˓<JoinChatRoomResponse>)

Join A Room

You want your chat experience to open fast. The steps to opening a chat experience are:

• Create Room

• Create User

• Join Room (user gets permission to access events data from the room)

• Get Recent Events to display in your app

• If you have already created the room (step 1) then you can perform steps 2 - 4 using join room

DATA PARAMETERS

Provide a unique user ID string and chat handle string. If this is the first time the user ID has been used a new user
record will be created for the user. Whenever the user creates an event in the room by doing an action like saying
something, the user information will be returned.

You can optionally also provide a URL to an image and a URL to a profile.

If you provide user information and the user already exists in the database, the user will be updated with the new
information.

The user will be added to the list of participants in the room and the room participant count will increase.

The user will be removed from the room automatically after some time if the user doesn’t perform any operations.

Users can only execute commands in the room if they have joined the room.

When a logged in user joins a room an entrance event is generated in the room.

When a logged in user leaves a room, an exit event is generated in the room

Creating A New User: You have the option to create or update an existing user during join.

48 Chapter 12. Chat Client

Sportstalk SDK -iOS

Parameters

• limit: (optional) Defaults to 50. This limits the number of previous messages returned when joining the room.

• userid: (required) If the userid is new then the user will be created. If the userid is already in use in the database
then the user will be updated.

• handle: (Optional) A unique string representing the user that is easy for other users to type.

– Example @GeorgeWashington could be the handle but Display Name could be “Wooden Teef For The
Win”.

– If you are creating a user and you don’t specify a handle, the system will generate one for you (using
Display Name as basis if you provide that).

– If you request a handle and it’s already in use a new handle will be generated for you by adding a number
from 1-99 and returned.

– If the handle can’t be generated because all the options 1-99 on the end of it are taken then the request will
be rejected with BadRequest status code.

– Only these characters may be used: “abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU-
VWXYZ1234567890_”

• displayname: (optional) This is the desired name to display, typically the real name of the person.

• pictureurl: (optional) The URL to the picture for this user.

• profileurl: (optional) The profileurl for this user.

Warning This method requires authentication

Request Model: ChatRequest.JoinRoom

public class JoinRoom {
public var roomid: String?
public var userid: String?
public var handle: String?
public var displayname: String?
public var pictureurl: URL?
public var profileurl: URL?
public var limit: Int? = 50

}

Response Model: JoinChatRoomResponse

public struct JoinChatRoomResponse: Codable {
public var kind: String?
public var user: User?
public var room: ChatRoom?
public var eventscursor: GetUpdatesResponse?

}

12.13. Join Room 49

Sportstalk SDK -iOS

12.14 Join Room by CustomId

func joinRoomByCustomId(_ request: ChatRequest.JoinRoomByCustomId, completionHandler:
→˓@escaping Completion<JoinChatRoomResponse>)

Join A Room By Custom ID

This method is the same as Join Room, except you can use your customid

The benefit of this method is you don’t need to query to get the roomid using customid, and then make another call to
join the room. This eliminates a request and enables you to bring your chat experience to your user faster.

You want your chat experience to open fast. The steps to opening a chat experience are:

1. Create Room

2. Create User

3. Join Room (user gets permission to access events data from the room)

4. Get Recent Events to display in your app

If you have already created the room (step 1) then you can perform steps 2 - 4 using join room.

When you attempt to join the room, if the userid you provide does not exist then a user will be created for you
automatically.

If you provide a Display Name and you do not provide a handle then the display name will automatically be used
to generate a handle for you. If you do not provide a display name or a handle then a 16 character handle will be
automatically generated for you.

DATA PARAMETERS

Provide a unique user ID string and chat handle string. If this is the first time the user ID has been used a new user
record will be created for the user. Whenever the user creates an event in the room by doing an action like saying
something, the user information will be returned.

You can optionally also provide a URL to an image and a URL to a profile.

If you provide user information and the user already exists in the database, the user will be updated with the new
information.

The user will be added to the list of participants in the room and the room participant count will increase.

The user will be removed from the room automatically after some time if the user doesn’t perform any operations.

Users can only execute commands in the room if they have joined the room.

When a logged in user joins a room an entrance event is generated in the room.

When a logged in user leaves a room, an exit event is generated in the room.

Creating A New User: You have the option to create or update an existing user during join.

Parameters

• limit: (optional) Defaults to 50. This limits the number of previous messages returned when joining the room.

• userid: (required). If the userid is new then the user will be created. If the userid is already in use in the database
then the user will be updated.

• handle: (Optional) A unique string representing the user that is easy for other users to type.

– Example @GeorgeWashington could be the handle but Display Name could be “Wooden Teef For The
Win”.

50 Chapter 12. Chat Client

Sportstalk SDK -iOS

– If you are creating a user and you don’t specify a handle, the system will generate one for you (using
Display Name as basis if you provide that).

– If you request a handle and it’s already in use a new handle will be generated for you by adding a number
from 1-99 and returned.

– If the handle can’t be generated because all the options 1-99 on the end of it are taken then the request will
be rejected with BadRequest status code.

– Only these characters may be used: “abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU-
VWXYZ1234567890_”

• displayname: (optional) This is the desired name to display, typically the real name of the person.

• pictureurl: (optional) The URL to the picture for this user.

• profileurl: (optional) The profileurl for this user.

Warning This method requires authentication

Request Model: ChatRequest.JoinRoomByCustomId

public class JoinRoomByCustomId {
public var customid: String?
public var userid: String?
public var handle: String?
public var displayname: String?
public var pictureurl: URL?
public var profileurl: URL?
public var limit: Int? = 50

}

Response Model: JoinChatRoomResponse

public struct JoinChatRoomResponse: Codable {
public var kind: String?
public var user: User?
public var room: ChatRoom?
public var eventscursor: GetUpdatesResponse?

}

12.15 Exit Room

func exitRoom(_ request: ChatRequest.ExitRoom, completionHandler: @escaping Completion
→˓<ExitChatRoomResponse>)

Exit a Room

This method should be called to remove a user from a room. This will cause an EXIT event to be broadcast in the
room and this user will no longer show up in the list of attendees in the room.

Parameters

• roomid: (required) Room id that you want to exit

• userid: (required) user id specific to App

Warning This method requires authentication

Request Model: ChatRequest.ExitRoom

12.15. Exit Room 51

Sportstalk SDK -iOS

public class ExitRoom {
public var roomid: String?
public var userid: String?

}

Response Model: ExitChatRoomResponse

public struct ExitChatRoomResponse: Codable {
public var kind: String?

}

12.16 Get Updates

func getUpdates(_ request: ChatRequest.GetUpdates, completionHandler: @escaping
→˓Completion<GetUpdatesResponse>)

Get the Recent Updates to a Room

You can use this function to poll the room to get the recent events in the room. The recommended poll interval is
500ms. Each event has an ID and a timestamp. To detect new messages using polling, call this function and then
process items with a newer timestamp than the most recent one you have already processed.

Each event in the stream has a KIND property. Inspect the property to determine if it is a;

• enter event: A user has joined the room.

• exit event: A user has exited chat.

• message: A user has communicated a message.

• reply: A user sent a message in response to another user.

• reaction: A user has reacted to a message posted by another user.

• action: A user is performing an ACTION (emote) alone or with another user.

Enter and Exit Events

Enter and Exit events may not be sent if the room is expected to have a very large number of users.

Parameters

• roomid: (required) Room id that you want to update

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) Number of events to return. Default is 100, maximum is 500

Warning This method requires authentication

Request Model: ChatRequest.GetUpdates

public class GetUpdates {
public var roomid: String?
public var cursor: String?
public var limit: Int = 100

}

Response Model: GetUpdatesResponse

52 Chapter 12. Chat Client

Sportstalk SDK -iOS

public struct GetUpdatesResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var room: ChatRoom?
public var events: [Event]

}

12.17 Get More Updates

func getMoreUpdates(_ request: ChatRequest.GetMoreUpdates, completionHandler:
→˓@escaping Completion<GetUpdatesResponse>)

Get the Recent Updates to a Room

You can use this function to poll the room to get the recent events in the room. The recommended poll interval is
500ms. Each event has an ID and a timestamp. To detect new messages using polling, call this function and then
process items with a newer timestamp than the most recent one you have already processed.

Each event in the stream has a KIND property. Inspect the property to determine if it is a;

• enter event: A user has joined the room.

• exit event: A user has exited chat.

• message: A user has communicated a message.

• reply: A user sent a message in response to another user.

• reaction: A user has reacted to a message posted by another user.

• action: A user is performing an ACTION (emote) alone or with another user.

Enter and Exit Events

Enter and Exit events may not be sent if the room is expected to have a very large number of users.

Parameters

• roomid: (required) Room id that you want to update

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) Number of events to return. Default is 100, maximum is 500

Warning This method requires authentication

Request Model: ChatRequest.GetUpdates

public class GetMoreUpdates {
public var roomid: String?
public var cursor: String?
public var limit: Int = 100

}

Response Model: GetUpdatesResponse

12.17. Get More Updates 53

Sportstalk SDK -iOS

public struct GetUpdatesResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var room: ChatRoom?
public var events: [Event]

}

12.18 Execute Command

func executeChatCommand(_ request: ChatRequest.ExecuteChatCommand, completionHandler:
→˓@escaping Completion<ExecuteChatCommandResponse>)

Executes a command in a chat room

Precondition The user must JOIN the room first with a call to Join Room. Otherwise you’ll receive HTTP Status
Code PreconditionFailed (412)

API UPDATES

• replyto: This is deprecated. For replies use Quoted Reply or Threaded Reply. For most use cases, Quoted Reply
is the recommended approach.

SENDING A MESSAGE

• Send any text that doesn’t start with a reserved symbol to perform a SAY command.

• Use this API call to REPLY to existing messages

• Use this API call to perform ACTION commands

• Use this API call to perform ADMIN commands

example These commands both do the same thing, which is send the message “Hello World” to the room. SAY Hello,
World

ACTION COMMANDS

• Action commands start with the / character

example

/dance nicole User sees: You dance with Nicole Nicole sees: (user’s handle) dances with you Everyone else sees:
(user’s handle) dances with Nicole

This requires that the action command dance is on the approved list of commands and Nicole is the handle of a
participant in the room, and that actions are allowed in the room.

ADMIN COMMANDS

• These commands start with the * character

example - ban : This bans the user from the entire chat experience (all rooms).

• restore : This restores the user to the chat experience (all rooms).

• purge : This deletes all messages from the specified user.

• deleteallevents : This deletes all messages in this room.

Parameters

54 Chapter 12. Chat Client

Sportstalk SDK -iOS

• command: (required) The command to execute. See examples above.

• userid: (required) The userid of user who is executing the command. The user must have joined the room first.

• eventtype: (optional, default = speech) By default, the API will determine the type of event by processing your
command. However you can send custom commands.

• custom : This indicates you will be using a custom event type.

• announcement : This indicates the event is of type announcement.

• ad : Use this event type to push an advertisement. Use the CustomPayload property to specify parameters for
your add.

• customtype: (optional) A string having meaning to your app that represents a custom type of event defined by
you. You must specify “custom” as the eventtype to use this. If you don’t, the event type will be forced to
custom anyway.

• custompayload: (optional) A string (XML or JSON usually) representing custom data for your application to
use.

• replyto: (optional) Use this field to provide the EventID of an event you want to reply to. Replies have a different
event type and contain a copy of the original event.

• moderation: (optional) Use this field to override the moderation state of the chat event. Use this when you have
already inspected the content. Use one of the values below.

– approved : The content has already been approved by a moderator and it should not be sent to the moder-
ation queue if users report it since the decision was already made to approve it.

– prescreened : The content was prescreened, but not approved. This means it can still be flagged for
moderation queue by the users. This state allows a data analyst to distinguish between content that was
approved by a moderator and content that went through a filtering process but wasn’t explicitly approved
or rejected.

– rejected : The content has been rejected by a moderator and it should not be broadcast into the chat stream,
but it should be saved to the chat room history for future analysis or audit trail purposes.

RESPONSE CODES

200 | OK : Sweet, sweet success.

400 | BadRequest : Something is wrong with your request. View response message and errors list for details.

403 | Forbidden : The userid issuing the request is banned from chatting in this room (or is banned globally).

405 | MethodBlocked : The method was blocked because it contained profanity and filtermode was set to ‘block’.

409 | Conflict : The customid of your event is already in use.

412 | PreconditionFailed : User must JOIN the room before executing a chat command.

Request Model: ChatRequest.ExecuteChatCommand

public class ExecuteChatCommand {
public var roomid: String?
public var command: String?
public var userid: String?
public var moderation: String?
public var eventtype: EventType?
public var customtype: String?
public var customid: String?
public var custompayload: String?

}

12.18. Execute Command 55

Sportstalk SDK -iOS

Response Model: ExecuteChatCommandResponse

public struct ExecuteChatCommandResponse: Codable {
public var kind: String?
public var op: String?
public var room: ChatRoom?
public var speech: Event?
public var action: Event?

}

12.19 Send Quoted Reply

func sendQuotedReply(_ request: ChatRequest.SendQuotedReply, completionHandler:
→˓@escaping Completion<Event>)

Quotes an existing message and republishes it with a new message

This method is provided to support a chat experience where a person wants to reply to another person, and the reply
is inline with the rest of chat, but contains a copy of all or part of the original message you are replying to. You can
see this behavior in WhatsApp and iMessage. This way, when viewing the reply, the user doesn’t need to scroll up
searching conversation history for the context (the parent the reply is addresssing).

Parameters

• eventid: (required) The ID of the event you are quoting

• userid: (required) The userid of the user who is publishing the quoted reply.

• body: (required) The contents of the reply for the quoted reply. Cannot be empty.

• customid: (optional) Assigns a custom ID to the quoted reply event.

• custompayload: (optional) Attach a custom payload string to the quoted reply such as JSON or XML.

• customfield1: (optional) Use this field however you wish.

• customfield2: (optional) Use this field however you wish.

• customtags: (optional) An array of strings, use this field however you wish.

Request Model: ChatRequest.SendQuotedReply

public class SendQuotedReply {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var body: String?
public var customid: String?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?

(continues on next page)

56 Chapter 12. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

12.20 Send Threaded Reply

func sendQuotedReply(_ request: ChatRequest.SendQuotedReply, completionHandler:
→˓@escaping Completion<Event>)

Creates a threaded reply to another message event

The purpose of this method is to enable support of a sub-chat within the chat room. You can use it to split off
the conversation into a nested conversation. You can build a tree structure of chat messages and replies, but it is
recommended not to build experiences deeper than parent and child conversation level or it becomes complex for the
users to follow.

Replies do not support admin or action commands

Parameters

• eventid: (required) The ID of the event you are quoting

• userid: (required) The userid of the user who is publishing the quoted reply.

• body: (required) The contents of the reply for the quoted reply. Cannot be empty.

• customid: (optional) Assigns a custom ID to the quoted reply event.

• custompayload: (optional) Attach a custom payload string to the quoted reply such as JSON or XML.

• customfield1: (optional) Use this field however you wish.

12.20. Send Threaded Reply 57

Sportstalk SDK -iOS

• customfield2: (optional) Use this field however you wish.

• customtags: (optional) An array of strings, use this field however you wish.

Request Model: ChatRequest.SendThreadedReply

public class SendThreadedReply {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var body: String?
public var customid: String?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

58 Chapter 12. Chat Client

Sportstalk SDK -iOS

12.21 List Messages By User

func listMessagesByUser(_ request: ChatRequest.ListMessagesByUser, completionHandler:
→˓@escaping Completion<ListMessagesByUser>)

Gets a list of users messages

The purpose of this method is to get a list of messages or comments by a user, with count of replies and reaction data.
This way, you can easily make a screen in your application that shows the user a list of their comment contributions
and how people reacted to it.

Parameters

• roomid: (required) Room id, in which you want to fetch messages

• userid: (required) user id, against which you want to fetch messages

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) default 200

Warning This method requires authentication

Request Model: ChatRequest.ListMessagesByUser

public class ListMessagesByUser {
public var cursor: String?
public var limit: Int? = 200
public var userId: String?
public var roomid: String?

}

Response Model: ListMessagesByUser

public struct ListMessagesByUser: Codable {
public var kind: String?
public var cursor: String?
public var events: [Event]

}

12.22 Purge Message

func purgeMessage(_ request: ChatRequest.PurgeUserMessages, completionHandler:
→˓@escaping Completion<ExecuteChatCommandResponse>)

Executes a command in a chat room to purge all messages for a user

This does not DELETE the message. It flags the message as moderator removed.

Parameters

• roomid: (required)

• userid: (required) the id of the owner of the messages

• handle: (required) the handle of the owner of the messages

• password: (required) a valid admin password

12.21. List Messages By User 59

Sportstalk SDK -iOS

Warning This method requires authentication

Request Model: ChatRequest.PurgeUserMessages

public class PurgeUserMessages {
public var roomid: String?
public var userid: String?
public var handle: String?
public var password: String?
private var command: String!

}

Response Model: ExecuteChatCommandResponse

public struct ExecuteChatCommandResponse: Codable {
public var kind: String?
public var op: String?
public var room: ChatRoom?
public var speech: Event?
public var action: Event?

}

12.23 Flag Event As Locally Deleted

func flagEventLogicallyDeleted(_ request: ChatRequest.FlagEventLogicallyDeleted,
→˓completionHandler: @escaping Completion<DeleteEventResponse>)

Set Deleted (LOGICAL DELETE)

Everything in a chat room is an event. Each event has a type. Events of type “speech, reply, quote” are considered
“messages”.

Use logical delete if you want to flag something as deleted without actually deleting the message so you still have the
data. When you use this method:

• The message is not actually deleted. The comment is flagged as deleted, and can no longer be read, but replies
are not deleted.

• If flag “permanentifnoreplies” is true, then it will be a permanent delete instead of logical delete for this comment
if it has no children.

• If you use “permanentifnoreplies” = true, and this comment has a parent that has been logically deleted, and this
is the only child, then the parent will also be permanently deleted (and so on up the hierarchy of events).

Parameters

• roomid: (required) The ID of the room containing the event

• eventid: (required) The unique ID of the chat event to delete. The user posting the delete request must be the
owner of the event or have moderator permission

• userid: (required) This is the application specific user ID of the user deleting the comment. Must be the owner
of the message event or authorized moderator.

• deleted: (required) Set to true or false to flag the comment as deleted. If a comment is deleted, then it will have
the deleted field set to true, in which case the contents of the event message should not be shown and the body
of the message will not be returned by the API by default. If a previously deleted message is undeleted, the flag
for deleted is set to false and the original comment body is returned

60 Chapter 12. Chat Client

Sportstalk SDK -iOS

• permanentifnoreplies: (optional) If this optional parameter is set to “true”, then if this event has no replies it will
be permanently deleted instead of logically deleted. If a permanent delete is performed, the result will include
the field “permanentdelete=true”

If you want to mark a comment as deleted, and replies are still visible, use “true” for the logical delete value. If you
want to permanently delete the message and all of its replies, pass false

Request Model: ChatRequest.FlagEventLogicallyDeleted

public class FlagEventLogicallyDeleted {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var deleted: Bool?
public var permanentifnoreplies: Bool?

}

Response Model: ListMessagesByUser

public struct ListMessagesByUser: Codable {
public var kind: String?
public var cursor: String?
public var events: [Event]

}

12.24 Permanently Delete Event

func permanentlyDeleteEvent(_ request: ChatRequest.PermanentlyDeleteEvent,
→˓completionHandler: @escaping Completion<DeleteEventResponse>)

Deletes an event from the room.

This does not DELETE the message. It flags the message as moderator removed.

Parameters

• roomid: (required) the room id in which you want to remove the message

• eventId: (required) the message you want to remove.

• userid: (optional) If provided, a check will be made to enforce this userid (the one deleting the event) is the
owner of the event or has elevated permissions. If null, it assumes your business service made the determination
to delete the event. If it is not provided this authorization check is bypassed.

Warning This method requires authentication

Request Model: ChatRequest.PermanentlyDeleteEvent

public class PermanentlyDeleteEvent {
public var roomid: String?
public var eventid: String?
public var userid: String?

}

Response Model: DeleteEventResponse

12.24. Permanently Delete Event 61

Sportstalk SDK -iOS

public struct DeleteEventResponse: Codable {
public var kind: String?
public var permanentdelete: Bool?
public var event: Event?

}

12.25 Delete All Events

func deleteAllEvents(_ request: ChatRequest.DeleteAllEvents, completionHandler:
→˓@escaping Completion<ExecuteChatCommandResponse>)

Deletes all the events in a room.

Parameters

• roomid: (required)

• userid: (required) the id of the owner of the messages

• password: (required) a valid admin password

Request Model: ChatRequest.DeleteAllEvents

public class DeleteAllEvents {
public var roomid: String?
private var command: String?
public var password: String?
public var userid: String?

}

Response Model: ExecuteChatCommandResponse

public struct ExecuteChatCommandResponse: Codable {
public var kind: String?
public var op: String?
public var room: ChatRoom?
public var speech: Event?
public var action: Event?

}

12.26 List Messages of User

func listMessagesByUser(_ request: ChatRequest.ListMessagesByUser, completionHandler:
→˓@escaping Completion<ListMessagesByUserResponse>)

Gets a list of users messages

The purpose of this method is to get a list of messages or comments by a user, with count of replies and reaction data.
This way, you can easily make a screen in your application that shows the user a list of their comment contributions
and how people reacted to it.

Parameters

• roomid: (required) Room id, in which you want to fetch messages

62 Chapter 12. Chat Client

Sportstalk SDK -iOS

• userid: (required) user id, against which you want to fetch messages

• cursor: (optional) Used in cursoring through the list. Gets the next batch of users. Read ‘nextCur’ property of
result set and pass as cursor value.

• limit: (optional) default 200

Warning This method requires authentication

Request Model: ChatRequest.ListMessagesByUser

public class ListMessagesByUser {
public var cursor: String?
public var limit: String? = defaultLimit
public var userId: String?
public var roomid: String?

}

Response Model: ListMessagesByUserResponse

public struct ListMessagesByUserResponse: Codable {
public var kind: String?
public var cursor: String?
public var events: [Event]

}

12.27 Report A Message

func reportMessage(_ request: ChatRequest.ReportMessage, completionHandler: @escaping
→˓Completion<Event>)

Reports a message to the moderation team

A reported message is temporarily removed from the chat event stream until it is evaluated by a moderator.

Parameters

• roomid: the id of the room in which you want to report the event

• eventid: the id of the event that you want to report.

• userid: (required) user id specific to app

• reporttype: (required) [defaults=”abuse”] e.g. abuse

Warning This method requires authentication.

Request Model: ChatRequest.ReportMessage

public class ReportMessage {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var reporttype = "abuse"

}

Response Model: Event

12.27. Report A Message 63

Sportstalk SDK -iOS

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

12.28 React to an Event

func reactToEvent(_ request: ChatRequest.ReactToEvent, completionHandler: @escaping
→˓Completion<Event>)

Adds or removes a reaction to an existing event

After this completes, a new event appears in the stream representing the reaction. The new event will have an updated
version of the event in the replyto field, which you can use to update your UI.

Parameters

• userid: (required) user id specific to app

• roomid: (required) Room Id, in which you want to react

• eventid: (required) message id, that you want to report.

• reacted: (required) true/false

• reaction: (required) e.g. like

Warning This method requires authentication.

Request Model: ChatRequest.ReactToEvent

64 Chapter 12. Chat Client

Sportstalk SDK -iOS

public class ReactToEvent {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var reaction: String?
public var reacted: String? = "false"

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

12.29 Report User in Room

func reportUserInRoom(_ request: ChatRequest.ReportUserInRoom, completionHandler:
→˓@escaping Completion<ChatRoom>)

Reports a user in the room

• This API enables users to report other users who exhibit abusive behaviors. It enables users to silence another
user when a moderator is not present. If the user receives too many reports in a trailing 24 hour period, the user
will become flagged at the room level.

• This API moderates users on the ROOM LEVEL. If a There is an API method that enable reporting users at the
global user level which impacts all rooms. This API impacts only the experience for the specified userid within

12.29. Report User in Room 65

Sportstalk SDK -iOS

the specified room.

• This API will return an error (see responses below) if user reporting is not enabled for your application in the
application settings by setting User Reports limit to a value > 0.

• A user who is flagged will have the shadowban effect applied.

Parameters

• roomid: (required) the id of the room in which you want to report the event

• userid: (required) the application specific user ID of the user reporting the first user

• reporttype: (required) [defaults=”abuse”] Possible values: [.abuse, .spam]. SPAM is unsolicited commercial
messages and abuse is hate speach or other unacceptable behavior.

RESPONSE CODES

200 | OK : Sweet, sweet success.

404 | Not Found : The specified user or application could not be found.

412 | PreconditionFailed : The request was rejected because user reporting is not enabled for the application.

Request Model: ChatRequest.ReportUserInRoom

public class ReportUserInRoom {
public var roomid: String?
public var userid: String?
public var reporttype: ReportType? = .abuse

}

Response Model: ChatRoom

open class ChatRoom: Codable {
public var kind: String?
public var id: String?
public var appid: String?
public var ownerid: String?
public var name: String?
public var description: String?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var enableactions: Bool?
public var enableenterandexit: Bool?
public var open: Bool?
public var inroom: Int?
public var moderation: String?
public var maxreports: Int64?
public var enableprofanityfilter: Bool?
public var delaymessageseconds: Int64?
public var added: Date?
public var whenmodified: Date?

}

66 Chapter 12. Chat Client

Sportstalk SDK -iOS

12.30 Bounce User

func bounceUser(_ request: ChatRequest.BounceUser, completionHandler: @escaping
→˓Completion<BounceUserRequest>)

Remove the user from the room and prevent the user from reentering.

Optionally display a message to people in the room indicating this person was bounced.

When you bounce a user from the room, the user is removed from the room and blocked from reentering. Past events
generated by that user are not modified (past messages from the user are not removed)

Parameters

• userid: (required) user id specific to app

• bounce: (required) True if the user is being bounced from the room. False if user is debounced, allowing the
user to reenter the room.

• roomid: (required) The ID of the chat room from which to bounce this user

• announcement: (optional) If provided, this announcement is displayed to the people who are in the room, as the
body of a BOUNCE event.

Request Model: ChatRequest.BounceUser

public class BounceUser {
public var userid: String?
public var bounce: Bool?
public var roomid: String?
public var announcement: String?

}

Response Model: BounceUserResponse

public struct BounceUserResponse: Codable {
public var kind: String?
public var event: Event?
public var room: ChatRoom?

}

12.31 Search Event History

func searchEventHistory(_ request: ChatRequest.SearchEvent, completionHandler:
→˓@escaping Completion<ListEventsResponse>)

Searches the message history applying the specified filters.

This returns displayable messages (for example speech, quote, threadedreply) that are in the active state (not flagged
by moderator or logically deleted).

Parameters

• fromuserid: (optional) Return ony events from the specified user

• fromhandle: (optional) Return only events from a user with the specified handle. Exact match, case insensitive.

• roomid: (optional) Return only events in the specified room.

12.30. Bounce User 67

Sportstalk SDK -iOS

• body: (optional) Returns only messages which contain the specified body substring.

• limit: (optional) Default is 50, maximum is 200. Limits how many items are returned.

• cursor: (optional) Leave blank to start from the beginning of the result set; provide the value from the previous
returned cursor to resume cursoring through the next page of results.

• direction: (optional) Defaults to Backward. Pass forward or backward. Backward is newest to oldest order,
forward is oldest to newest order.

• types: (optional) Default = all. Use this to filter for specific event types.

– speech

– quote

– reply

– announcement

– custom

– reaction

– action

– enter

– exit

– ad

– roomopened

– roomclosed

– purge

– remove

– replace

– bounce

Request Model: ChatRequest.SearchEvent

public class SearchEvent {
public var fromuserid: String?
public var fromhandle: String?
public var roomid: String?
public var body: String?
public var limit: Int? = 50
public var cursor: String?
public var direction: Ordering?
public var types: [EventType]?

}

Response Model: Event

public struct ListEventsResponse: Codable {
public var kind: String?
public var cursor: String?
public var more: Bool?
public var itemcount: Int64?
public var events: [Event]

}

68 Chapter 12. Chat Client

Sportstalk SDK -iOS

12.32 Update Chat Event

func updateChatEvent(_ request: ChatRequest.UpdateChatEvent, completionHandler:
→˓@escaping Completion<Event>)

Updates the contents of an existing chat event

This API may be used to update the body of an existing Chat Event. It is used to enable the user to edit the message
after it is published. This may only be used with MESSAGE event types (speech, quote, reply). When the chat event is
updated another event of type “replace” will be emitted with the updated event contents, and the original event will be
replaced in future calls to List Event History, Join and List Previous Events. The event will also be flagged as edited
by user.

Parameters

• roomid: (required) The ID of the chat room conversation

• eventid: (required) The unique ID of the chat event to be edited. This must be a messsage type event (speech,
quote or reply).

• userid: (required) The application specific user ID updating the chat event. This must be the owner of the
comment or moderator / admin.

• body: (required) The new body contents of the event.

• customid: (optional) Optionally replace the customid.

• custompayload: (optional) Optionally replace the payload of the event.

• customfield1: (optional) Optionally replace the customfield1 value.

• customfield2: (optional) Optionally replace the customfield2 value.

• customtags: (optional) Optionaly replace the custom tags.

Request Model: ChatRequest.UpdateChatEvent

public class UpdateChatEvent {
public var roomid: String?
public var eventid: String?
public var userid: String?
public var body: String?
public var customid: String?
public var custompayload: String?
public var customfield1: String?
public var customfield2: String?
public var customtags: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?

(continues on next page)

12.32. Update Chat Event 69

Sportstalk SDK -iOS

(continued from previous page)

public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

12.33 Start Listening to Chat Updates

func startListeningToChatUpdates(completionHandler: @escaping Completion<[Event]>)

Periodically calls func getUpdates(request:completionHandler:) to receive latest chat events.

Request Model: None

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?

(continues on next page)

70 Chapter 12. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

12.34 Stop Listening to Chat Updates

func stopListeningToChatUpdates()

Cancels listening to Chat Updates

Request Model: None

Response Model: None

12.35 Approve Event

func approveEvent(_ request: ModerationRequest.ApproveEvent, completionHandler:
→˓@escaping Completion<Event>)

Approves a message in the moderation queue

If PRE-MODERATION is enabled for a room, then all messages go to the queue before they can appear in the event
stream. For each incomming message, a webhook will be fired, if one is configured.

If the room is set to use POST-MODERATION, messages will only be sent to the moderation queue if they are
reported.

Warning Requires Authentication

Request Model: ModerationRequest.ApproveEvent

public class ApproveEvent {
public var roomid: String?
public var eventid: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?
public var originalbody: String?
public var added: Date?

(continues on next page)

12.34. Stop Listening to Chat Updates 71

Sportstalk SDK -iOS

(continued from previous page)

public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

12.36 Reject Event

func rejectEvent(_ request: ModerationRequest.RejectEvent, completionHandler:
→˓@escaping Completion<Event>)

Rejects a message in the moderation queue

If PRE-MODERATION is enabled for a room, then all messages go to the queue before they can appear in the event
stream. For each incomming message, a webhook will be fired, if one is configured.

If the room is set to use POST-MODERATION, messages will only be sent to the moderation queue if they are
reported.

Warning This method requires authentication

Request Model: ModerationRequest.RejectEvent

public class RejectEvent {
public var roomid: String?
public var eventid: String?

}

Response Model: Event

open class Event: Codable, Equatable {
public var kind: String?
public var id: String?
public var roomid: String?
public var body: String?

(continues on next page)

72 Chapter 12. Chat Client

Sportstalk SDK -iOS

(continued from previous page)

public var originalbody: String?
public var added: Date?
public var modified: Date?
public var ts: Date?
public var eventtype: EventType?
public var userid: String?
public var user: User?
public var customtype: String?
public var customid: String?
public var custompayload: String?
public var customtags: [String]?
public var customfield1: String?
public var customfield2: String?
public var replyto: Event?
public var parentid: String?
public var edited: Bool?
public var editedbymoderator: Bool?
public var censored: Bool?
public var deleted: Bool?
public var active: Bool?
public var shadowban: Bool?
public var likecount: Int64?
public var replycount: Int64?
public var reactions: [ChatEventReaction]
public var moderation: String?
public var reports: [ChatEventReport]

}

12.37 List All Messages In Moderation Queue

func listMessagesInModerationQueue(_ request: ModerationRequest.
→˓listMessagesInModerationQueue, completionHandler: @escaping Completion
→˓<ListMessagesNeedingModerationResponse>)

List all the messages in the moderation queue

Parameters

• limit: (optional) Defaults to 200. This limits how many messages to return from the queue

• roomId: (optional) Provide the ID for a room to filter for only the queued events for a specific room

• cursor: (optional) Provide cursor value to get the next page of results.

Warning This method requires authentication

Request Model: ModerationRequest.listMessagesInModerationQueue

public class listMessagesInModerationQueue {
public var limit: Int? = 200
public var roomId: String?
public var cursor: String?

}

Response Model: ListMessagesNeedingModerationResponse

12.37. List All Messages In Moderation Queue 73

Sportstalk SDK -iOS

public struct ListMessagesNeedingModerationResponse: Codable {
public var kind: String?
public var events: [Event]

}

74 Chapter 12. Chat Client

CHAPTER

THIRTEEN

COPYRIGHT & LICENSE

Copyright (c) 2019 Sportstalk247

75

	GETTING STARTED: Setting up the SDK
	Callback Function Overview
	Creating/Updating a user
	Joining a Room
	Joining a Room using Custom ID
	Getting room updates
	Start/Stop Getting Event Updates
	Sending A Message
	The Bare Minimum
	Chat Application Best Practices
	User Client
	Create/Update User
	Delete User
	Get User Details
	List Users
	Ban/Unban User
	Global Purge User
	Search User
	Report User
	Shadow Ban User
	List User Notifications
	Mark All Notification As Read
	Set User Notification As Read
	Set User Notification As Read (By ChatEventId)
	Delete User Notification
	Delete User Notification By ChatEventId

	Chat Client
	Create Room
	Get Room Details
	Get Room Details By Custom ID
	Delete Room
	Update Room
	Update and Close Room
	List Rooms
	List Room Participants
	List Event History
	List Previous Events
	List Event By Type
	List Event By Timestamp
	Join Room
	Join Room by CustomId
	Exit Room
	Get Updates
	Get More Updates
	Execute Command
	Send Quoted Reply
	Send Threaded Reply
	List Messages By User
	Purge Message
	Flag Event As Locally Deleted
	Permanently Delete Event
	Delete All Events
	List Messages of User
	Report A Message
	React to an Event
	Report User in Room
	Bounce User
	Search Event History
	Update Chat Event
	Start Listening to Chat Updates
	Stop Listening to Chat Updates
	Approve Event
	Reject Event
	List All Messages In Moderation Queue

	Copyright & License

